版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山東畜牧獸醫(yī)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知實(shí)數(shù)x、y、z滿(mǎn)足x+2y+3z=1,則x2+y2+z2的最小值為_(kāi)_____.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,即:x2+y2+z2的最小值為114.故為:1142.某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答問(wèn)題者進(jìn)入下一輪考核,否則
即被淘汰.已知某選手能正確回答第一、二、三、四輪的問(wèn)題的概率分別為、、、,且各輪問(wèn)題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.
(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問(wèn)題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.3.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長(zhǎng)為8,離心率e=2,過(guò)雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長(zhǎng)為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長(zhǎng)為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長(zhǎng)度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.4.欲對(duì)某商場(chǎng)作一簡(jiǎn)要審計(jì),通過(guò)檢查發(fā)票及銷(xiāo)售記錄的2%來(lái)快速估計(jì)每月的銷(xiāo)售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷(xiāo)售額組成一個(gè)調(diào)查樣本.這種抽取樣本的方法是()A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個(gè)體比較多,抽樣時(shí)某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),這是系統(tǒng)抽樣中的分組,然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷(xiāo)售額組成一個(gè)調(diào)查樣本.故選B.5.若不等式的解集,則實(shí)數(shù)=___________.答案:-46.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個(gè)為零,另一個(gè)非零,從而可知有且僅有4個(gè)點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個(gè)交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.7.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE=______(用a,b,c表示)答案:在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故為:12a+14b+14c.8.如圖,PA,PB切⊙O于
A,B兩點(diǎn),AC⊥PB,且與⊙O相交于
D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°9.已知圓C:x2+y2-4x-5=0.
(1)過(guò)點(diǎn)(5,1)作圓C的切線,求切線的方程;
(2)若圓C的弦AB的中點(diǎn)P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(guò)(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點(diǎn),其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因?yàn)閳AC的弦AB的中點(diǎn)P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以y2-y1x2-x1=-1,故所求直線方程為
x+y-4=0-----------------(14分)10.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏東30°方向航行2km.故選B.11.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長(zhǎng)為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.12.在下面的圖示中,結(jié)構(gòu)圖是()
A.
B.
C.
D.
答案:B13.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個(gè)數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.14.已知拋物線和雙曲線都經(jīng)過(guò)點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點(diǎn)為F(1,0)由題意知雙曲線的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)∴c=1對(duì)于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.15.參數(shù)方程(t是參數(shù))表示的圖象是()
A.射線
B.直線
C.圓
D.雙曲線答案:A16.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.17.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C18.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.19.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C20.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()
A.i>50
B.i<50
C.i>=50
D.i<=50
答案:A21.已知一物體在共點(diǎn)力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點(diǎn)力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B22.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10223.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()
A.36個(gè)
B.42個(gè)
C.30個(gè)
D.35個(gè)答案:A24.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D25.下列命題:
①用相關(guān)系數(shù)r來(lái)刻畫(huà)回歸的效果時(shí),r的值越大,說(shuō)明模型擬合的效果越好;
②對(duì)分類(lèi)變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;
其中正確命題的序號(hào)是
______.(寫(xiě)出所有正確命題的序號(hào))答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說(shuō)明模型擬合的效果越好,故①錯(cuò)誤,②對(duì)分類(lèi)變量X與Y的隨機(jī)變量的K2觀測(cè)值來(lái)說(shuō),K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1;故③正確,故為:③26.賦值語(yǔ)句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說(shuō)法都不對(duì)答案:B27.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.28.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為_(kāi)_____.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3529.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B30.(1+x)6的各二項(xiàng)式系數(shù)的最大值是______.答案:根據(jù)二項(xiàng)展開(kāi)式的性質(zhì)可得,(1+x)6的各二項(xiàng)式系數(shù)的最大值C36=20故為:2031.設(shè)b是a的相反向量,則下列說(shuō)法錯(cuò)誤的是()
A.a(chǎn)與b的長(zhǎng)度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C32.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開(kāi)式中,一共有多少項(xiàng)?答案:因?yàn)椋簭牡谝粋€(gè)括號(hào)中選一個(gè)字母有3種方法,從第二個(gè)括號(hào)中選一個(gè)字母有4種方法,從第三個(gè)括號(hào)中選一個(gè)字母有5種方法.故根據(jù)乘法計(jì)數(shù)原理可知共有N=3×4×5=60(項(xiàng)).33.圓柱的底面積為S,側(cè)面展開(kāi)圖為正方形,那么這個(gè)圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長(zhǎng)是l,∵圓柱的底面積為S,側(cè)面展開(kāi)圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.34.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對(duì)乙運(yùn)動(dòng)員的判斷錯(cuò)誤的是()A.乙運(yùn)動(dòng)員得分的中位數(shù)是28B.乙運(yùn)動(dòng)員得分的眾數(shù)為31C.乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員D.乙運(yùn)動(dòng)員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個(gè)數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運(yùn)動(dòng)員得分的中位數(shù)是28,A項(xiàng)是正確的;乙運(yùn)動(dòng)員得分的眾數(shù)為31,B項(xiàng)是正確的;乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員,C各項(xiàng)是正確的.而D項(xiàng)因?yàn)橐疫\(yùn)動(dòng)員的得分沒(méi)有0分,故D項(xiàng)錯(cuò)誤故選:D35.已知直線經(jīng)過(guò)點(diǎn),傾斜角,設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。答案:2解析:把直線代入得,則點(diǎn)到兩點(diǎn)的距離之積為36.如圖是從甲、乙兩個(gè)班級(jí)各隨機(jī)選出9名同學(xué)進(jìn)行測(cè)驗(yàn)成績(jī)的莖葉圖,從圖中看,平均成績(jī)較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績(jī):46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績(jī):57,62,65,75,79,81,84,87,89.∴甲平均成績(jī)?yōu)?9;乙平均成績(jī)?yōu)?5;故為:乙.37.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長(zhǎng)記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4
i=1(ihi)=2Sk.類(lèi)比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4
i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.38.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為_(kāi)_____.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為122539.對(duì)賦值語(yǔ)句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個(gè)變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡(jiǎn)單題,賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。40.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為_(kāi)_____.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.41.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B42.寫(xiě)出求1+2+3+4+5+6+…+100的一個(gè)算法.可運(yùn)用公式1+2+3+…+n=n(n+1)2直接計(jì)算.
第一步______;
第二步______;
第三步
輸出計(jì)算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項(xiàng)和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計(jì)算S=n(n+1)2.故為:取n=100;計(jì)算S=n(n+1)2.43.已知邊長(zhǎng)為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L(zhǎng)等于1所以|AB+BC+CD|=|AD|
=1故為:144.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過(guò)O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.45.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C46.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),且b=3a.
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過(guò)焦點(diǎn)F2的直線l的一個(gè)法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.
(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請(qǐng)求出m的范圍;若不存在,請(qǐng)說(shuō)明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點(diǎn)M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實(shí)數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因?yàn)閥1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在47.已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C48.與直線3x+4y-3=0平行,并且距離為3的直線方程為_(kāi)_____.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.49.已知點(diǎn)P是長(zhǎng)方體ABCD-A1B1C1D1底面ABCD內(nèi)一動(dòng)點(diǎn),其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點(diǎn)P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點(diǎn)在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時(shí),截得的圖形是拋物線,故點(diǎn)P在底面的軌跡為拋物線的一部分.故選D.50.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
B.40°
C.60°
D.70°答案:D第2卷一.綜合題(共50題)1.已知拋物線y2=4x上兩定點(diǎn)A、B分別在對(duì)稱(chēng)軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡(jiǎn)得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當(dāng)y0=-1時(shí),d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時(shí)P點(diǎn)坐標(biāo)為(14,-1).…(12分).2.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍
______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.3.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c4.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).5.函數(shù)y=ax2+a與(a≠0)在同一坐標(biāo)系中的圖象可能是()
A.
B.
C.
D.
答案:D6.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為
______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c7.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗(yàn)田上對(duì)某棉花新品種進(jìn)行施化肥量x對(duì)產(chǎn)量y影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).
施化肥量x15202530354045棉花產(chǎn)量y330345365405445450455(1)畫(huà)出散點(diǎn)圖;
(2)判斷是否具有相關(guān)關(guān)系.答案:(1)根據(jù)已知表格中的數(shù)據(jù)可得施化肥量x和產(chǎn)量y的散點(diǎn)圖如下所示:(2)根據(jù)(1)中散點(diǎn)圖可知,各組數(shù)據(jù)對(duì)應(yīng)點(diǎn)大致分布在一個(gè)條形區(qū)域內(nèi)(一條直線附近)故施化肥量x和產(chǎn)量y具有線性相關(guān)關(guān)系.8.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C9.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無(wú)解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無(wú)窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒(méi)寫(xiě)出解扣1分)10.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫(huà)y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D11.已知三角形ABC的一個(gè)頂點(diǎn)A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點(diǎn)斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故點(diǎn)B的坐標(biāo)為(3,1).設(shè)點(diǎn)A關(guān)于角B的平分線所在的直線方程為x+y-4=0的對(duì)稱(chēng)點(diǎn)為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故點(diǎn)M(1,2),由兩點(diǎn)式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點(diǎn)C的坐標(biāo)為(2,52),由此可得得AC的方程為x=2.12.設(shè)F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A13.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時(shí)兩條直線平行,當(dāng)k≠3時(shí)有2=-24-k≠3
所以
k=5故為:3或5.14.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為_(kāi)_____.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.15.四名志愿者和兩名運(yùn)動(dòng)員排成一排照相,要求兩名運(yùn)動(dòng)員必須站在一起,則不同的排列方法為()A.A44A22B.A55A22C.A55D.A66A22答案:根據(jù)題意,要求兩名運(yùn)動(dòng)員站在一起,所以使用捆綁法,兩名運(yùn)動(dòng)員站在一起,有A22種情況,將其當(dāng)做一個(gè)元素,與其他四名志愿者全排列,有A55種情況,結(jié)合分步計(jì)數(shù)原理,其不同的排列方法為A55A22種,故選B.16.已知、分別是的外接圓和內(nèi)切圓;證明:過(guò)上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過(guò)分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.17.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書(shū)的概率;
(Ⅱ)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書(shū)的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書(shū)的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.18.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問(wèn)此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來(lái)抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.19.(1+x2)5的展開(kāi)式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項(xiàng)為C25(x2)2=10×x24=52x2,故選項(xiàng)為為C.20.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.21.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B22.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)23.若實(shí)數(shù)X、少滿(mǎn)足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D24.橢圓的兩個(gè)焦點(diǎn)坐標(biāo)是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B25.某校為提高教學(xué)質(zhì)量進(jìn)行教改實(shí)驗(yàn),設(shè)有試驗(yàn)班和對(duì)照班.經(jīng)過(guò)兩個(gè)月的教學(xué)試驗(yàn),進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.
80及80分以下80分以上合計(jì)試驗(yàn)班321850對(duì)照班12m50合計(jì)4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.26.位于直角坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下列規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位,移動(dòng)的方向向左或向右,并且向左移動(dòng)的概率為,向右移動(dòng)的概率為,則質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(1,0)的概率是()
A.
B.
C.
D.答案:D27.函數(shù)f(x)=x2+2的單調(diào)遞增區(qū)間為
______.答案:如圖所示:函數(shù)的遞增區(qū)間是:[0,+∞)故為:[0,+∞)28.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D29.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:13530.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為_(kāi)_____.答案:由題意,方程x2m+y2n=1表示雙曲線時(shí),mn<0,m>0,n<0時(shí),有2×2=4種,m<0,n>0時(shí),有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1231.A、B、C是我軍三個(gè)炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時(shí)刻,A發(fā)現(xiàn)敵炮陣地的某信號(hào),由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時(shí)發(fā)現(xiàn)這一信號(hào)(該信號(hào)的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點(diǎn)為原點(diǎn),正東方向?yàn)閤軸的正方向建立直角坐標(biāo)系,則A(3,0)
B(-3,0)
C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點(diǎn)的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x(chóng)-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得
x=8(負(fù)值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)32.8的值為()
A.2
B.4
C.6
D.8答案:B33.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.34.若a=(1,1),則|a|=______.答案:由題意知,a=(1,1),則|a|=1+1=2,故為:2.35.設(shè)二項(xiàng)式(33x+1x)n的展開(kāi)式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對(duì)于二項(xiàng)式(33x+1x)n的展開(kāi)式的所有二項(xiàng)式系數(shù)的和為S,則S=2n,令x=1,可得其展開(kāi)式的各項(xiàng)系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.36.函數(shù)數(shù)列{fn(x)}滿(mǎn)足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.37.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為_(kāi)_____.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.38.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()
A.
B.a(chǎn)
C.
D.答案:D39.下列各量:①密度
②浮力
③風(fēng)速
④溫度,其中是向量的個(gè)數(shù)有()個(gè).A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時(shí)具有大小和方向兩個(gè)要素才是向量,在所給的四個(gè)量中,密度只有大小,浮力既有大小又有方向,風(fēng)速既有大小又有方向,溫度只有大小沒(méi)有方向綜上可知向量的個(gè)數(shù)是2個(gè),故選C.40.現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24.類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為_(kāi)_____.答案:∵同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24,類(lèi)比到空間有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為a38,故為a38.41.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C42.已知圖形F上的點(diǎn)A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點(diǎn),則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(
)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點(diǎn)坐標(biāo)代入可得B,點(diǎn)的坐標(biāo)為.所以選D.43.極點(diǎn)到直線ρ(cosθ+sinθ)=3的距離是
______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點(diǎn)到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.44.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時(shí),常通過(guò)分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對(duì)解決實(shí)際問(wèn)題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.45.在某項(xiàng)體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個(gè)最高分和一個(gè)攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評(píng)委為該選手打出的7個(gè)分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個(gè)最低分89,去掉一個(gè)最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.46.已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓x2+(y-1)2=上的動(dòng)點(diǎn),點(diǎn)N是圓(x-2)2+y2=上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C47.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()
A.整數(shù)
B.奇數(shù)或偶數(shù)
C.正整數(shù)或負(fù)整數(shù)
D.自然數(shù)或負(fù)整數(shù)答案:A48.有一個(gè)質(zhì)地均勻的正四面體,它的四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為_(kāi)_____.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿(mǎn)足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.49.曲線(t為參數(shù))上的點(diǎn)與A(-2,3)的距離為,則該點(diǎn)坐標(biāo)是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B50.將包含甲、乙兩人的4位同學(xué)平均分成2個(gè)小組參加某項(xiàng)公益活動(dòng),則甲、乙兩名同學(xué)分在同一小組的概率為()
A.
B.
C.
D.答案:C第3卷一.綜合題(共50題)1.圓ρ=2sinθ的圓心到直線2ρcosθ+ρsinθ+1=0的距離是______.答案:由ρ=2sinθ,化為直角坐標(biāo)方程為x2+y2-2y=0,其圓心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化為直角坐標(biāo)方程為2x+y+1=0,由點(diǎn)到直線的距離公式,得+d=|1+1|5=255.故為255.2.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.3.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰三角形,腰AB=AC=1,如圖,則平面圖形的實(shí)際面積為()
A.1
B.2
C.
D.
答案:A4.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過(guò)點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過(guò)點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)5.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個(gè)法向量.解析:以D為原點(diǎn),DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長(zhǎng)為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個(gè)法向量.6.對(duì)變量x,y
有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v
有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說(shuō)法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B7.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓8.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.9.一支田徑隊(duì)有男運(yùn)動(dòng)員112人,女運(yùn)動(dòng)員84人,用分層抽樣的方法從全體男運(yùn)動(dòng)員中抽出了32人,則應(yīng)該從女運(yùn)動(dòng)員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C10.如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6和8,另一個(gè)與它相似的直角三角形邊長(zhǎng)分別是4和3及x,那么x的值的個(gè)數(shù)為()
A.1個(gè)
B.2個(gè)
C.2個(gè)以上但有限
D.無(wú)數(shù)個(gè)答案:B11.(理)某單位有8名員工,其中有5名員工曾經(jīng)參加過(guò)一種或幾種技能培訓(xùn),另外3名員工沒(méi)有參加過(guò)任何技能培訓(xùn),現(xiàn)要從8名員工中任選3人參加一種新的技能培訓(xùn);
(I)求恰好選到1名曾經(jīng)參加過(guò)技能培訓(xùn)的員工的概率;
(Ⅱ)這次培訓(xùn)結(jié)束后,仍然沒(méi)有參加過(guò)任何技能培訓(xùn)的員工人數(shù)X是一個(gè)隨機(jī)變量,求X的分布列和數(shù)學(xué)期望.答案:(I)由題意知本題是一個(gè)等可能事件的概率,∵試驗(yàn)發(fā)生包含的事件是從8人中選3個(gè),共有C83=56種結(jié)果,滿(mǎn)足條件的事件是恰好選到1名曾經(jīng)參加過(guò)技能培訓(xùn)的員工,共有C51C32=15∴恰好選到1名已參加過(guò)其他技能培訓(xùn)的員工的概率P=1556(II)隨機(jī)變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機(jī)變量X的分布列是X0123P15615561528528∴X的數(shù)學(xué)期望是1×1556+2×
1528+3×528=15812.在直角坐標(biāo)系中,畫(huà)出下列向量:
(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;
(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;
(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)13.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會(huì)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A14.已知一直線斜率為3,且過(guò)A(3,4),B(x,7)兩點(diǎn),則x的值為()
A.4
B.12
C.-6
D.3答案:A15.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿(mǎn)足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C16.在畫(huà)兩個(gè)變量的散點(diǎn)圖時(shí),下面哪個(gè)敘述是正確的()
A.預(yù)報(bào)變量x軸上,解釋變量y軸上
B.解釋變量x軸上,預(yù)報(bào)變量y軸上
C.可以選擇兩個(gè)變量中任意一個(gè)變量x軸上
D.可以選擇兩個(gè)變量中任意一個(gè)變量y軸上答案:B17.已知定點(diǎn)A(12.0),M為曲線x=6+2cosθy=2sinθ上的動(dòng)點(diǎn),若AP=2AM,試求動(dòng)點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動(dòng)點(diǎn)(x,y)由AP=2AM,即M為線段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=1618.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()
A.a(chǎn)<b<c
B.a(chǎn)<c<B
C.c<b<a
D.b<c<a
答案:C19.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.20.有以下四個(gè)結(jié)論:
①lg(lg10)=0;
②lg(lne)=0;
③若e=lnx,則x=e2;
④ln(lg1)=0.
其中正確的是()
A.①②
B.①②③
C.①②④
D.②③④答案:A21.已知二階矩陣A=2ab0屬于特征值-1的一個(gè)特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個(gè)特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.22.若以(y+2)2=4(x-1)上任一點(diǎn)P為圓心作與y軸相切的圓,那么這些圓必定過(guò)平面內(nèi)的點(diǎn)()
A.(1,-2)
B.(3,-2)
C.(2,-2)
D.不存在這樣的點(diǎn)答案:C23.
如圖梯形A1B1C1D1是一平面圖形ABCD的斜二側(cè)直觀圖,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,則四邊形ABCD的面積是()
A.10
B.5
C.2
D.10
答案:B24.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.25.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因?yàn)楹瘮?shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項(xiàng)的系數(shù)為負(fù)?2k-4<0?k<2.故為:C26.直線被圓x2+y2=9截得的弦長(zhǎng)為(
)
A.
B.
C.
D.答案:B27.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.28.下列三句話按“三段論”模式排列順序正確的是()
①y=sin
x(x∈R
)是三角函數(shù);②三角函數(shù)是周期函數(shù);
③y=sin
x(x∈R
)是周期函數(shù).
A.①②③
B.②①③
C.②③①
D.③②①答案:B29.與直線3x+4y-3=0平行,并且距離為3的直線方程為_(kāi)_____.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.30.一只袋中裝有2個(gè)白球、3個(gè)紅球,這些球除顏色外都相同.
(Ⅰ)從袋中任意摸出1個(gè)球,求摸到的球是白球的概率;
(Ⅱ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球都是白球的概率;
(Ⅲ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球顏色不同的概率.答案:(Ⅰ)從5個(gè)球中摸出1個(gè)球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個(gè)球,摸到白球的概率為25.
…(4分)(Ⅱ)從袋中任意摸出2個(gè)球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個(gè)球,摸出的兩個(gè)球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個(gè)球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個(gè)球,摸出的2個(gè)球顏色不同的概率為610=35.
…(14分)31.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.32.已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸,拋物線上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,求m的值及拋物線方程.答案:∵拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,其上一點(diǎn)M(3,m)∴設(shè)拋物線方程為y2=2px∵其上一點(diǎn)M(3,m)到焦點(diǎn)的距離為5,∴3+p2=5,可得p=4∴拋物線方程為y2=8x.33.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).34.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以線段AB、AC為鄰邊的平行四邊形兩條對(duì)角線的長(zhǎng);
(2)設(shè)實(shí)數(shù)t滿(mǎn)足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對(duì)角線的長(zhǎng)分別為42、210.(方法二)設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線的交點(diǎn)為E,則:E為B、C的中點(diǎn),E(0,1)又E(0,1)為A、D的中點(diǎn),所以D(1,4)故所求的兩條對(duì)角線的長(zhǎng)分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11535.如圖所示的圓盤(pán)由八個(gè)全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.36.命題“零向量與任意向量共線”的否定為_(kāi)_____.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱(chēng)命題,其否定為特稱(chēng)命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.37.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 海鮮購(gòu)銷(xiāo)合同范本模板示例
- 借款合同協(xié)議格式
- 技術(shù)開(kāi)發(fā)與服務(wù)協(xié)議
- 玻璃原片采購(gòu)交易價(jià)目表
- 借款合同中的抵押條款
- 重新簽訂的合同協(xié)議
- 農(nóng)產(chǎn)品選購(gòu)合同格式
- 展覽活動(dòng)承包合同
- 文化傳播公司內(nèi)容創(chuàng)意與市場(chǎng)推廣策略方案設(shè)計(jì)方
- 智慧城市管理
- 110kV升壓站構(gòu)支架組立施工方案
- 何以中國(guó):公元前的中原圖景
- 【中藥貯藏與養(yǎng)護(hù)問(wèn)題及解決對(duì)策4000字(論文)】
- 自然環(huán)境對(duì)聚落的影響
- 2023-2024學(xué)年天津市部分地區(qū)六年級(jí)數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含答案
- 河南省洛陽(yáng)市偃師區(qū)2023-2024學(xué)年四年級(jí)數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含答案
- 小學(xué)生預(yù)防性侵講稿
- 人工智能算法貝葉斯算法
- 外墻外保溫監(jiān)理實(shí)施細(xì)則
- 剪映使用課件s
- B2B電子商務(wù)網(wǎng)站調(diào)研報(bào)告
評(píng)論
0/150
提交評(píng)論