2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年哈爾濱電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.設(shè)a,b是不共線的兩個(gè)向量,已知=2+m,=+,=-2.若A,B,D三點(diǎn)共線,則m的值為()

A.1

B.2

C.-2

D.-1答案:D2.栽培甲、乙兩種果樹,先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.

(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;

(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.3.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B4.某公司的管理機(jī)構(gòu)設(shè)置是:設(shè)總經(jīng)理一個(gè),副總經(jīng)理兩個(gè),直接對(duì)總經(jīng)理負(fù)責(zé),下設(shè)有6個(gè)部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財(cái)務(wù)部和保衛(wèi)部.請(qǐng)根據(jù)以上信息補(bǔ)充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()

A.保衛(wèi)部,安全部

B.安全部,保衛(wèi)部

C.質(zhì)檢中心,保衛(wèi)部

D.安全部,質(zhì)檢中心

答案:B5.

以下四組向量中,互相平行的有()組.

A.一

B.二

C.三

D.四答案:D6.圓x2+y2-4x=0在點(diǎn)P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D7.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A8.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()

A.8

B.11

C.16

D.10答案:A9.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C10.不等式log32x-log3x2-3>0的解集為()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D11.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.12.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)13.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點(diǎn),因而直線不過第二象限.故選B14.把點(diǎn)按向量平移到點(diǎn),則的圖象按向量平移后的圖象的函數(shù)表達(dá)式為(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為15.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)16.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個(gè)B.2個(gè)C.4個(gè)D.8個(gè)答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個(gè),故選C.17.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.18.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°19.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.20.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.21.某學(xué)院有四個(gè)飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個(gè)飼養(yǎng)房各抽取6只B.把所以白鼠都編上號(hào),用隨機(jī)抽樣法確定24只C.在四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號(hào),用簡(jiǎn)單隨機(jī)抽樣確定各自要抽取的對(duì)象答案:A中對(duì)四個(gè)飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個(gè)個(gè)體入選概率的不均衡,是錯(cuò)誤的方法.B中保證了各個(gè)個(gè)體入選概率的相等,但由于沒有注意到處在四個(gè)不同環(huán)境中會(huì)產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號(hào)統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個(gè)層次中沒有考慮到個(gè)體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個(gè)個(gè)體概率不等.故選D.22.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,523.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因?yàn)樨璦丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設(shè)b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.24.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.25.如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達(dá)C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問此艦有沒有觸礁的危險(xiǎn)?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險(xiǎn).26.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.27.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D28.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對(duì)稱,則m最小正值是

A.

B.

C.

D.答案:A29.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C30.設(shè)集合A={1,2},={2,3},C={2,3,4},則(A∩B)∪C=______.答案:由題得:A∩B={2},又因?yàn)镃={2,3,4},(故A∩B)∪C={2,3,4}.故為

{2,3,4}.31.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則動(dòng)點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對(duì)于在平面內(nèi),若動(dòng)點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動(dòng)點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.32.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.33.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn34.某射擊運(yùn)動(dòng)員在四次射擊中分別打出了9,x,10,8環(huán)的成績(jī),已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1235.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12036.已知圓柱的軸截面周長(zhǎng)為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時(shí)取等號(hào),由此可得V≤π恒成立故選:B37.某制藥廠為了縮短培養(yǎng)時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗(yàn)的溫度分別為x1,x2,x3,若第2個(gè)試點(diǎn)比第1個(gè)試點(diǎn)好,則x3的值為(

)。答案:34℃或45℃38.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個(gè)不小于1.39.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為

______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2240.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點(diǎn).答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時(shí)取等號(hào).由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點(diǎn)為(14,16).41.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.42.已知△ABC,D為AB邊上一點(diǎn),若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.43.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項(xiàng)為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24044.點(diǎn)P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D45.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()

A.7

B.8

C.9

D.10答案:B46.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A47.過拋物線y2=4x的焦點(diǎn)作直線l交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點(diǎn)到準(zhǔn)線的距離為4,設(shè)A,B兩點(diǎn)到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.48.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A49.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A50.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切第2卷一.綜合題(共50題)1.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C2.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D3.在下列各圖中,每個(gè)圖的兩個(gè)變量具有線性相關(guān)關(guān)系的圖是()

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)答案:D4.設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.5.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()

A.平行

B.垂直

C.相交但不垂直

D.不能確定答案:B6.已知一直線斜率為3,且過A(3,4),B(x,7)兩點(diǎn),則x的值為()

A.4

B.12

C.-6

D.3答案:A7.在極坐標(biāo)系中,極點(diǎn)到直線ρcosθ=2的距離為______.答案:直線ρcosθ=2即x=2,極點(diǎn)的直角坐標(biāo)為(0,0),故極點(diǎn)到直線ρcosθ=2的距離為2,故為2.8.若直線y=x+b與圓x2+y2=2相切,則b的值為

______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.9.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).10.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()

A.[,)

B.[,)

C.[,)

D.[,)答案:A11.一個(gè)類似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機(jī)終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對(duì)答案:A12.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長(zhǎng)為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7213.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.14.已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點(diǎn)M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.15.用秦九韶算法求多項(xiàng)式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計(jì)算多項(xiàng)式值關(guān)鍵是能正確地將所給多項(xiàng)式改寫,然后由內(nèi)到外逐次計(jì)算,由于后項(xiàng)計(jì)算需用到前項(xiàng)的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.16.把點(diǎn)按向量平移到點(diǎn),則的圖象按向量平移后的圖象的函數(shù)表達(dá)式為(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為17.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____18.圓的極坐標(biāo)方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標(biāo)是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標(biāo)是(1,-π3).故為(1,-π3).19.對(duì)變量x,y

有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v

有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B20.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A21.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,22.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.23.平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓∵當(dāng)一個(gè)動(dòng)點(diǎn)到兩個(gè)頂點(diǎn)距離之和等于定值時(shí),再加上這個(gè)和大于兩個(gè)定點(diǎn)之間的距離,可以得到動(dòng)點(diǎn)的軌跡是橢圓,沒有加上的條件不一定推出,而點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.24.已知正方形ABCD的邊長(zhǎng)為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B25.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.26.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為727.已知正方形ABCD的邊長(zhǎng)為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D28.運(yùn)用三段論推理:

復(fù)數(shù)不可以比較大小,(大前提)

2010和2011都是復(fù)數(shù),(小前提)

2010和2011不可以比較大?。ńY(jié)

論)

該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是______錯(cuò)誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個(gè)前提和一個(gè)結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯(cuò)誤的,該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是大前提錯(cuò)誤.故為:大前提29.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.30.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個(gè)根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個(gè)根x=ba,另一方面,假設(shè)方程ax=b還有一個(gè)根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個(gè)根.綜上所述,方程ax=b有且只有一個(gè)根.31.已知z是純虛數(shù),z+21-i是實(shí)數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實(shí)數(shù),故b=-2則Z=-2i故為:-2i32.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長(zhǎng)線于點(diǎn)G.

(1)求證:圓心O在直線AD上.

(2)求證:點(diǎn)C是線段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線段GD的中點(diǎn).(10分)33.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.34.對(duì)于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因?yàn)閒(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因?yàn)閤2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.35.某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開的可能性為,隨機(jī)變量ξ表示同時(shí)被打開的水龍頭的個(gè)數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨(dú)立重復(fù)試驗(yàn)中,恰好發(fā)生k次的概率.對(duì)5個(gè)水龍頭的處理可視為做5次試驗(yàn),每次試驗(yàn)有2種可能結(jié)果:打開或未打開,相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.36.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對(duì)稱,則m最小正值是

A.

B.

C.

D.答案:A37.螺母是由

______和

______兩個(gè)簡(jiǎn)單幾何體構(gòu)成的.答案:根據(jù)螺母的結(jié)構(gòu)特征知,是由正六棱柱里面挖去的一個(gè)圓柱構(gòu)成的,故為:正六棱柱,圓柱.38.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個(gè)路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.39.等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的面積為

______.答案:等腰梯形ABCD,上底邊CD=1,腰AD=CB=2,下底AB=3,所以梯形的高為:1,按平行于上、下底邊取x軸,則直觀圖A′B′C′D′的高為:12sin45°=24所以直觀圖的面積為:12×(1+3)×24=22故為:2240.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標(biāo)志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.41.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.42.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.43.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯(cuò)誤.故選B.44.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點(diǎn)E,與BC的延長(zhǎng)線交于點(diǎn)F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:645.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項(xiàng)中a?n=-3+3=0.故選D.46.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.47.選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個(gè)等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π48.已知在一場(chǎng)比賽中,甲運(yùn)動(dòng)員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場(chǎng)比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3849.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x50.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級(jí)高個(gè)子學(xué)生B.校園中長(zhǎng)的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級(jí)在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.第3卷一.綜合題(共50題)1.下列說法正確的是()

A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件

B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件

C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大

D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B2.隨機(jī)地向某個(gè)區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個(gè)撒種區(qū)域的面積大約有______m2.答案:設(shè)整個(gè)撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.3.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實(shí)數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±24.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.5.復(fù)數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.6.已知向量=(2,4,x),=(2,y,2),若||=6,

⊥,則x+y的值是()

A.-3或1

B.3或1

C.-3

D.1答案:A7.與原數(shù)據(jù)單位不一樣的是()

A.眾數(shù)

B.平均數(shù)

C.標(biāo)準(zhǔn)差

D.方差答案:D8.在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是()

A.(1,)

B.(1,-)

C.(1,0)

D.(1,π)答案:D9.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B10.已知G是△ABC的重心,O是平面ABC外的一點(diǎn),若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.11.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A12.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因?yàn)楹瘮?shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項(xiàng)的系數(shù)為負(fù)?2k-4<0?k<2.故為:C13.給出下列四個(gè)命題,其中正確的一個(gè)是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%

B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好

D.線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D14.設(shè)復(fù)數(shù)z的實(shí)部是

12,且|z|=1,則z=______.答案:設(shè)復(fù)數(shù)z的虛部等于b,b∈z,由復(fù)數(shù)z的實(shí)部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故為:12±32i.15.有3名同學(xué)要爭(zhēng)奪2個(gè)比賽項(xiàng)目的冠軍,冠軍獲得者共有______種可能.答案:第一個(gè)項(xiàng)目的冠軍有3種情況,第二個(gè)項(xiàng)目的冠軍也有3種情況,根據(jù)分步計(jì)數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.16.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.17.如圖,在△ABC中,D是AC的中點(diǎn),E是BD的中點(diǎn),AE交BC于F,則的值等于()

A.

B.

C.

D.

答案:A18.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn),求證:AB2=BE·CD。

答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)椋浴螦CD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。19.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C20.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點(diǎn),分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個(gè)焦點(diǎn),則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡(jiǎn)整理得(3+4k2)x2=12(*)因?yàn)榉謩e過A、B向x軸作垂線,垂足恰為橢圓的兩個(gè)焦點(diǎn),故方程的兩個(gè)根為±1.代入方程(*),得k=±32故選A.21.圓x2+y2-6x+4y+12=0與圓x2+y2-14x-2y+14=0的位置關(guān)系是______.答案:∵圓x2+y2-6x+4y+12=0化成標(biāo)準(zhǔn)形式,得(x-3)2+(y+2)2=1∴圓x2+y2-6x+4y+12=0的圓心為C1(3,-2),半徑r1=1同理可得圓x2+y2-14x-2y+14=0的C2(7,1),半徑r2=6∵兩圓的圓心距|C1C2|=(7-3)2+(1+2)2=5∴|C1C2|=r2-r1=5,可得兩圓的位置關(guān)系是內(nèi)切故為:內(nèi)切22.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長(zhǎng)是______.答案:∵AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.23.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預(yù)防感冒的有效率為95%

(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).24.閱讀下面的程序框圖,該程序運(yùn)行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.25.已知O、A、M、B為平面上四點(diǎn),且,則()

A.點(diǎn)M在線段AB上

B.點(diǎn)B在線段AM上

C.點(diǎn)A在線段BM上

D.O、A、M、B四點(diǎn)一定共線答案:B26.下列集合中,不同于另外三個(gè)集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對(duì)于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個(gè)元素,即方程“x=0”.故選D.27.給出下列結(jié)論:

(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;

(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;

(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;

(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

以上結(jié)論中,正確的有幾個(gè)?()

A.1

B.2

C.3

D.4答案:A28.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點(diǎn)D在OC的延長(zhǎng)線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長(zhǎng)為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個(gè)等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.29.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()

A.

B.

C.

D.答案:D30.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因?yàn)橹本€l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為

π3.31.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.32.在語句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B33.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點(diǎn)P(x,y)在直線y=x+1上,則其經(jīng)變換后的點(diǎn)Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點(diǎn)Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標(biāo)軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點(diǎn)P(x,y),其經(jīng)變換后得到的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時(shí),方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當(dāng)b=0時(shí),由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點(diǎn)P(-bk,0),其經(jīng)變換后的點(diǎn)Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點(diǎn)P(0,k),其經(jīng)變換后得到的點(diǎn)Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)34.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(

A.2

B.5

C.2或5

D.或答案:A35.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標(biāo)原點(diǎn)到直線AB的距離為32,其中A(a,0),B(0,-b).

(1)求雙曲線的方程;

(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求B1M⊥B1N時(shí),直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.36.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.37.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()

A.若K2的觀測(cè)值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤

D.以上三種說法都不正確答案:C38.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:339.拋物線C:y=x2上兩點(diǎn)M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因?yàn)镸N=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.40.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點(diǎn)A看點(diǎn)B的仰角與從點(diǎn)B看點(diǎn)A的俯角互為內(nèi)錯(cuò)角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.41.搖獎(jiǎng)器有10個(gè)小球,其中8個(gè)小球上標(biāo)有數(shù)字2,2個(gè)小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個(gè)小球,規(guī)定所得獎(jiǎng)金(元)為這3個(gè)小球上記號(hào)之和,求此次搖獎(jiǎng)獲得獎(jiǎng)金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎(jiǎng)的獎(jiǎng)金數(shù)額為ξ元,當(dāng)搖出的3個(gè)小球均標(biāo)有數(shù)字2時(shí),ξ=6;當(dāng)搖出的3個(gè)小球中有2個(gè)標(biāo)有數(shù)字2,1個(gè)標(biāo)有數(shù)字5時(shí),ξ=9;當(dāng)搖出的3個(gè)小球有1個(gè)標(biāo)有數(shù)字2,2個(gè)標(biāo)有數(shù)字5時(shí),ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次搖獎(jiǎng)獲得獎(jiǎng)金數(shù)額的數(shù)字期望是395元.42.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對(duì)于A,f(x)=x(x≥0),不符合;對(duì)于B,f(x)=x(x≠0),不符合;對(duì)于C,f(x)=|x|(x∈R),不符合;對(duì)于D,f(x)=x(x∈R),符合;故選D.43.下列關(guān)于結(jié)構(gòu)圖的說法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論