版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在下列網(wǎng)格中,小正方形的邊長為1,點A、B、O都在格點上,則的正弦值是A. B. C. D.2.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或123.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關系的圖象是()A.B.C.D.4.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-15.下列計算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a76.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.7.一小組8位同學一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1688.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或149.點P(4,﹣3)關于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.12.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數(shù)的圖象經(jīng)過點,則的值為_________________.13.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經(jīng)過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.14.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于______.15.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.16.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質(zhì)環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).17.把多項式x3﹣25x分解因式的結果是_____三、解答題(共7小題,滿分69分)18.(10分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.19.(5分)某校組織學生去9km外的郊區(qū)游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發(fā),結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?20.(8分)在傳箴言活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行統(tǒng)計,并繪制成了如圖所示的兩幅統(tǒng)計圖(1)將條形統(tǒng)計圖補充完整;(2)該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是________;(3)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加總結會,請你用列表或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.21.(10分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?22.(10分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.23.(12分)由甲、乙兩個工程隊承包某校校園的綠化工程,甲、乙兩隊單獨完成這項工作所需的時間比是3∶2,兩隊共同施工6天可以完成.(1)求兩隊單獨完成此項工程各需多少天?(2)此項工程由甲、乙兩隊共同施工6天完成任務后,學校付給他們4000元報酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊各應得到多少元?24.(14分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
由題意根據(jù)勾股定理求出OA,進而根據(jù)正弦的定義進行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質(zhì);4.三角形三邊關系;4.分類討論.3、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-4、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關鍵是熟記分式方程無解的條件.5、A【解析】
根據(jù)合并同類項法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項正確;B.,故本選項錯誤;C.,故本選項錯誤;D.,故本選項錯誤.故選:A.【點睛】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎,掌握運算法則是解題的關鍵.6、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ7、C【解析】
先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).8、D【解析】
根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉(zhuǎn)換,關于x軸對稱的點和拋物線的關系.9、C【解析】
由題意得點P的坐標為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關于原點對稱,這兩點的橫縱坐標均互為相反數(shù);符號為(﹣,+)的點在第二象限.10、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、(4,6),(8﹣27,6),(27,6).【解析】
分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質(zhì)、坐標與圖形性質(zhì),解題關鍵是根據(jù)對等腰三角形性質(zhì)的掌握和勾股定理的應用.12、1【解析】
先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案為:1.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數(shù)法.本題的關鍵是求出C點坐標.13、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.14、【解析】
此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點睛】考核知識點:二次函數(shù)綜合題.熟記性質(zhì),數(shù)形結合是關鍵.15、1【解析】
畫出圖形,設菱形的邊長為x,根據(jù)勾股定理求出周長即可.【詳解】當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周長為1cm.
故答案是:1.【點睛】解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.16、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關系”是正確解答本題的關鍵.17、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點睛:此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應邊相等,根據(jù)勾股定理可求出AM的值,即可得出結論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).19、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】
設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解得:x=12,經(jīng)檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.20、(1)作圖見解析;(2)3;(3)【解析】
(1)根據(jù)發(fā)了3條箴言的人數(shù)與所占的百分比列式計算即可求出該班全體團員的總?cè)藬?shù)為12,再求出發(fā)了4條箴言的人數(shù),然后補全統(tǒng)計圖即可;(2)利用該班團員在這一個月內(nèi)所發(fā)箴言的總條數(shù)除以總?cè)藬?shù)即可求得結果;(3)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可.【詳解】解:(1)該班團員人數(shù)為:3÷25%=12(人),發(fā)了4條贈言的人數(shù)為:12?2?2?3?1=4(人),將條形統(tǒng)計圖補充完整如下:(2)該班團員所發(fā)贈言的平均條數(shù)為:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案為:3;(3)∵發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,∴發(fā)了3條箴言的同學中有一位女同學,發(fā)了4條箴言的同學中有一位男同學,方法一:列表得:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;方法二:畫樹狀圖如下:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;【點睛】此題考查了樹狀圖法與列表法求概率,以及條形統(tǒng)計圖與扇形統(tǒng)計圖的知識.注意平均條數(shù)=總條數(shù)÷總?cè)藬?shù);如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.21、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解析】
先設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【詳解】設每臺電腦x萬元,每臺電子白板y萬元.根據(jù)題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是讀懂題意,找出之間的數(shù)量關系,列出二元一次方程組.22、(1)見解析;(2)【解析】
(1)根據(jù)矩形的判定證明即可;(2)根據(jù)平行四邊形的性質(zhì)和等邊三角形的性質(zhì)解答即可.【詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據(jù)題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度EPS環(huán)保設施施工合同
- 凝血系統(tǒng)課件教學課件
- 2024年度婚姻心理咨詢服務協(xié)議
- 2024年全球互聯(lián)網(wǎng)金融服務協(xié)議
- 2024年廢舊書籍收購協(xié)議
- 2024代理授權協(xié)議合同租房合同模板
- 洗手絹課件教學課件
- 2024年度通信網(wǎng)絡建設與維護合同
- 2024機械使用合同
- (2024版)網(wǎng)絡安全系統(tǒng)設計與實施合同
- GB 20052-2024電力變壓器能效限定值及能效等級
- 手術切口感染PDCA案例
- 依托國家中小學智慧教育平臺開展有效教學的研究課題申報評審書
- 小學大思政課實施方案設計
- 供應室消防應急預案演練
- 校運會裁判員培訓
- 潮濕相關性皮炎的護理
- 洪恩識字配套字庫完整版識字啟蒙200字-生字組詞句子完整版可打印-點讀指讀
- 幼兒園園長的幼教教研與項目管理
- 2024年黑龍江建筑職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 鐵路邊坡水害分析報告
評論
0/150
提交評論