版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或42.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差3.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設(shè)點運動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.4.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.245.如圖的平面圖形繞直線l旋轉(zhuǎn)一周,可以得到的立體圖形是()A. B. C. D.6.下列四個多項式,能因式分解的是()A.a(chǎn)-1 B.a(chǎn)2+1C.x2-4y D.x2-6x+97.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個8.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.9.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點O旋轉(zhuǎn)某一角度時與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°10.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標(biāo)系中,點O為原點,平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(點B在第一象限),點C在AB的延長線上.(1)已知a=1,點B的縱坐標(biāo)為1.如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點的拋物線L3,頂點為P,開口向下,對應(yīng)函數(shù)的二次項系數(shù)為a3,=__.12.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.13.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.14.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時,隨值的增大而增大;⑤當(dāng)時,.其中,正確的說法有________(請寫出所有正確說法的序號).15.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.16.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.三、解答題(共8題,共72分)17.(8分)(8分)如圖,在平面直角坐標(biāo)系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.18.(8分)如圖,平面直角坐標(biāo)系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點.求反比例函數(shù)的表達式;若點C在反比例函數(shù)的圖象上,點D在x軸上,當(dāng)四邊形ABCD是平行四邊形時,求點D的坐標(biāo).19.(8分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關(guān)于x的函數(shù)關(guān)系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.20.(8分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結(jié)束,且速度均為1cm/s,設(shè)運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標(biāo),若不存在請說明理由?21.(8分)先化簡,再求值:,請你從﹣1≤x<3的范圍內(nèi)選取一個適當(dāng)?shù)恼麛?shù)作為x的值.22.(10分)解方程組.23.(12分)如圖,在平面直角坐標(biāo)系xOy中,直線與函數(shù)的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數(shù)的圖象的交點分別為點M,N,當(dāng)點M在點N下方時,寫出n的取值范圍.24.為了樹立文明鄉(xiāng)風(fēng),推進社會主義新農(nóng)村建設(shè),某村決定組建村民文體團隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機抽取部分村民進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)這次參與調(diào)查的村民人數(shù)為人;(2)請將條形統(tǒng)計圖補充完整;(3)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);(4)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.2、D【解析】
根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.3、A【解析】
解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.4、A【解析】
解:如圖,設(shè)對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質(zhì).5、B【解析】
根據(jù)面動成體以及長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉(zhuǎn)得到的立體圖形是解題關(guān)鍵.6、D【解析】試題分析:利用平方差公式及完全平方公式的結(jié)構(gòu)特征判斷即可.試題解析:x2-6x+9=(x-3)2.故選D.考點:2.因式分解-運用公式法;2.因式分解-提公因式法.7、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當(dāng)讓AB當(dāng)腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當(dāng)以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.8、A【解析】解:如圖,連接BE,設(shè)BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.9、C【解析】
先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,同旁內(nèi)角互補.10、C【解析】
先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當(dāng)x=1時,代入①式得3﹣a=1,即a=3.當(dāng)a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4﹣【解析】解:(1)當(dāng)a=1時,拋物線L的解析式為:y=x1,當(dāng)y=1時,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點B,∴AB=BC=1,∴AC=4;(1)如圖1,設(shè)拋物線L3與x軸的交點為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設(shè)OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設(shè)拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點睛:本題考查二次函數(shù)的圖象和性質(zhì).熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.12、±1【解析】
先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.13、-1【解析】
利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,
在每個象限內(nèi),y隨著x的增大而增大,
反比例函數(shù)圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.14、①②④【解析】
根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當(dāng)x>1時,y隨x值的增大而增大,④正確;當(dāng)y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.15、80°【解析】
根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點睛】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.16、1或【解析】
由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當(dāng)△EFG為等腰三角形時,當(dāng)EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當(dāng)EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【點睛】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點坐標(biāo),用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;(1)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標(biāo),從而根據(jù)三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點E,tan∠ABO==,∴OA=1,CE=3,∴點A的坐標(biāo)為(0,1)、點B的坐標(biāo)為C(4,0)、點C的坐標(biāo)為(﹣1,3),設(shè)直線AB的解析式為,則,解得:,故直線AB的解析式為,設(shè)反比例函數(shù)的解析式為(),將點C的坐標(biāo)代入,得3=,∴m=﹣3.∴該反比例函數(shù)的解析式為;(1)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,可得交點D的坐標(biāo)為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點:反比例函數(shù)與一次函數(shù)的交點問題.18、(1)y=(1)(1,0)【解析】
(1)將點M的坐標(biāo)代入一次函數(shù)解析式求得a的值;然后將點M的坐標(biāo)代入反比例函數(shù)解析式,求得k的值即可;(1)根據(jù)平行四邊形的性質(zhì)得到BC∥AD且BD=AD,結(jié)合圖形與坐標(biāo)的性質(zhì)求得點D的坐標(biāo).【詳解】解:(1)∵點M(a,4)在直線y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),將其代入y=得到:k=xy=1×4=4,∴反比例函數(shù)y=(x>0)的表達式為y=;(1)∵平面直角坐標(biāo)系中,直線y=1x+1與x軸,y軸分別交于A,B兩點,∴當(dāng)x=0時,y=1.當(dāng)y=0時,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴點C的縱坐標(biāo)也等于1,且點C在反比例函數(shù)圖象上,將y=1代入y=,得1=,解得x=1,∴C(1,1).∵四邊形ABCD是平行四邊形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)兩點的坐標(biāo)知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),點D在點A的右側(cè),∴點D的坐標(biāo)是(1,0).【點睛】考查了反比例函數(shù)與一次函數(shù)交點問題.熟練掌握平行四邊形的性質(zhì)和函數(shù)圖象上點的坐標(biāo)特征是解決問題的關(guān)鍵,難度適中.19、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解析】【分析】(1)根據(jù)“總利潤=A型電腦每臺利潤×A電腦數(shù)量+B型電腦每臺利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當(dāng)0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當(dāng)100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當(dāng)0<a<100時,y隨x的增大而減小,∴當(dāng)x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數(shù)量滿足33≤x≤60的整數(shù)時,均獲得最大利潤;③當(dāng)100<a<200時,a﹣100>0,y隨x的增大而增大,∴當(dāng)x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【點睛】本題考查了一次函數(shù)的應(yīng)用及一元一次不等式的應(yīng)用,弄清題意,找出題中的數(shù)量關(guān)系列出函數(shù)關(guān)系式、找出不等關(guān)系列出不等式是解題的關(guān)鍵.20、(1)證明見解析;(2)當(dāng)t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時,可得P1(3,0),P3(6,3),當(dāng)AD為對角線時,P2(0,3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年全球及中國2甲基四氫呋喃3酮行業(yè)運營狀況及需求趨勢預(yù)測報告
- 2024-2030年全球與中國加密USB閃存市場競爭趨勢及銷售渠道策略報告
- 2024-2030年中國黑加侖汁行業(yè)競爭趨勢及投資策略分析報告
- 2024-2030年中國魚油制品行業(yè)營銷態(tài)勢及消費需求趨勢預(yù)測報告
- 2024-2030年中國驅(qū)蟲藥行業(yè)市場容量分析及投資價值研究報告
- 2024-2030年中國飲料周轉(zhuǎn)箱行業(yè)競爭趨勢及投資策略分析報告
- 2024-2030年中國雨水收集系統(tǒng)行業(yè)運營模式及發(fā)展戰(zhàn)略研究報告
- 2024-2030年中國銀多金屬項目可行性研究報告
- 2024-2030年中國鋁冶煉及壓延加工行業(yè)供需趨勢及發(fā)展規(guī)劃研究報告
- 2024-2030年中國鐵路運輸行業(yè)發(fā)展模式規(guī)劃分析報告
- 人教版數(shù)學(xué)小升初銜接練習(xí)+解析(統(tǒng)計與概率)
- 泵房施工合同范例
- 食品代加工合同
- JT-T-1238-2019半柔性混合料用水泥基灌漿材料
- DZ∕T 0173-2022 大地電磁測深法技術(shù)規(guī)程
- HYT 116-2008 蒸餾法海水淡化蒸汽噴射裝置通 用技術(shù)要求(正式版)
- 2024保密知識競賽題庫(完整版)
- 人體常見病智慧樹知到期末考試答案章節(jié)答案2024年
- 2024年4月自考06962工程造價確定與控制試題
- 《跟上兔子》繪本五年級第1季A-Magic-Card
- 2024-2030年中國電動汽車(EV)充電基礎(chǔ)設(shè)施行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
評論
0/150
提交評論