版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算中正確的是()A.x2÷x8=x?6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°3.=()A.±4 B.4 C.±2 D.24.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數為()A.50° B.40° C.30° D.25°5.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.27.已知一個多邊形的內角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形8.2017年我國大學生畢業(yè)人數將達到7490000人,這個數據用科學記數法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1079.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′10.下列命題是真命題的是()A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形B.兩條對角線相等的四邊形是平行四邊形C.兩組對邊分別相等的四邊形是平行四邊形D.平行四邊形既是中心對稱圖形,又是軸對稱圖形11.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°12.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數()A.40° B.50° C.60° D.90°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于一元二次方程,根的判別式中的表示的數是__________.14.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.15.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.16.同時擲兩個質地均勻的骰子,觀察向上一面的點數,兩個骰子的點數相同的概率為.17.已知(x-ay)(x+ay),那么a=_______18.如圖,已知的半徑為2,內接于,,則__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)鐵嶺市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數關系,其圖象如圖所示:求y與x之間的函數關系式;商貿公司要想獲利2090元,則這種干果每千克應降價多少元?該干果每千克降價多少元時,商貿公司獲利最大?最大利潤是多少元?20.(6分)某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.21.(6分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數的圖象于點B,AB=.求反比例函數的解析式;若P(,)、Q(,)是該反比例函數圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.22.(8分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據商場的活動方式:若一次性付款4200元購買這種籃球,則在商場購買的數量比在商場購買的數量多5個,請求出這種籃球的標價;學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)23.(8分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.24.(10分)給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側),當∠MPN+∠MON=180°時,則稱點P是線段MN關于點O的關聯點.圖1是點P為線段MN關于點O的關聯點的示意圖.在平面直角坐標系xOy中,⊙O的半徑為1.(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關于點O的關聯點的是;(2)如圖3,M(0,1),N(,﹣),點D是線段MN關于點O的關聯點.①∠MDN的大小為;②在第一象限內有一點E(m,m),點E是線段MN關于點O的關聯點,判斷△MNE的形狀,并直接寫出點E的坐標;③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.25.(10分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.26.(12分)我市計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若由乙隊單獨施工,則完成工程所需天數是規(guī)定天數的1.5倍.如果由甲、乙兩隊先合做10天,那么余下的工程由乙隊單獨完成還需5天.這項工程的規(guī)定時間是多少天?已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合做來完成.則該工程施工費用是多少?27.(12分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據同底數冪的除法法則:底數不變,指數相減;同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;冪的乘方法則:底數不變,指數相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【點睛】此題主要考查了同底數冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.2、C【解析】
由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質,熟悉掌握性質是關鍵.3、B【解析】
表示16的算術平方根,為正數,再根據二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區(qū)別與聯系,一個正數算術平方根有一個,而平方根有兩個.4、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.5、D【解析】
解:設方程的另一個根為a,由一元二次方程根與系數的故選可得,解得a=,故選D.6、C【解析】
根據左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.7、D【解析】
根據多邊形的外角和是360°,以及多邊形的內角和定理即可求解.【詳解】設多邊形的邊數是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內角與外角,解題關鍵在于掌握其定理.8、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、C【解析】
根據旋轉的性質求解即可.【詳解】解:根據旋轉的性質,A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【點睛】本題主要考查三角形旋轉后具有的性質,注意靈活運用各條件10、C【解析】
根據平行四邊形的五種判定定理(平行四邊形的判定方法:①兩組對邊分別平行的四邊形;②兩組對角分別相等的四邊形;③兩組對邊分別相等的四邊形;④一組對邊平行且相等的四邊形;⑤對角線互相平分的四邊形)和平行四邊形的性質進行判斷.【詳解】A、一組對邊平行,另一組對邊相等的四邊形不是平行四邊形;故本選項錯誤;B、兩條對角線互相平分的四邊形是平行四邊形.故本選項錯誤;C、兩組對邊分別相等的四邊形是平行四邊形.故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形.故本選項錯誤;故選:C.【點睛】考查了平行四邊形的判定與性質.平行四邊形的判定方法共有五種,應用時要認真領會它們之間的聯系與區(qū)別,同時要根據條件合理、靈活地選擇方法.11、C【解析】
根據四邊形的內角和與直角三角形中兩個銳角關系即可求解.【詳解】解:∵四邊形的內角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關鍵是熟知四邊形的內角和為360°.12、B【解析】分析:根據“平行線的性質、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質、平角的定義和垂直的定義”是正確解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-5【解析】
分清一元二次方程中,二次項系數、一次項系數和常數項,直接解答即可.【詳解】解:表示一元二次方程的一次項系數.【點睛】此題考查根的判別式,在解一元二次方程時程根的判別式△=b2-4ac,不要盲目套用,要看具體方程中的a,b,c的值.a代表二次項系數,b代表一次項系數,c是常數項.14、2【解析】試題分析:根據題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41815、y=2(x+2)2+1【解析】試題解析:∵二次函數解析式為y=2x2+1,∴頂點坐標(0,1)向左平移2個單位得到的點是(-2,1),可設新函數的解析式為y=2(x-h)2+k,代入頂點坐標得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.16、【解析】試題分析:首先列表,然后根據表格求得所有等可能的結果與兩個骰子的點數相同的情況,再根據概率公式求解即可.解:列表得:(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36種等可能的結果,兩個骰子的點數相同的有6種情況,∴兩個骰子的點數相同的概率為:=.故答案為.考點:列表法與樹狀圖法.17、±4【解析】
根據平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點睛】本題考查的平方差公式:.18、【解析】分析:根據圓內接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數,然后根據勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數法即可得到函數的解析式;(2)根據銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據銷售量×每千克利潤=總利潤列出函數解析式求解即可.【詳解】(1)設y與x之間的函數關系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y與x之間的函數關系式為:y=10x+100;(2)根據題意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵為了讓顧客得到更大的實惠,∴x=9,答:這種干果每千克應降價9元;(3)該干果每千克降價x元,商貿公司獲得利潤是w元,根據題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴當x=5時,故該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【點睛】本題考查的是二次函數的應用,此類題目主要考查學生分析、解決實際問題能力,又能較好地考查學生“用數學”的意識.20、(1)見解析(2)選擇搖獎【解析】試題分析:(1)畫樹狀圖列出所有等可能結果,再讓所求的情況數除以總情況數即為所求的概率;
(2)算出相應的平均收益,比較大小即可.試題解析:(1)樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,∴搖出一紅一白的概率=;(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴搖獎的平均收益是:×18+×24+×18=22,∵22>20,∴選擇搖獎.【點睛】主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.21、(1);(2)P在第二象限,Q在第三象限.【解析】試題分析:(1)求出點B坐標即可解決問題;(2)結論:P在第二象限,Q在第三象限.利用反比例函數的性質即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數的解析式為.(2)結論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數法、反比例函數的性質、坐標與圖形的變化等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.22、(1)這種籃球的標價為每個50元;(2)見解析【解析】
(1)設這種籃球的標價為每個x元,根據題意可知在B超市可買籃球個,在A超市可買籃球個,根據在B商場比在A商場多買5個列方程進行求解即可;(2)分情況,單獨在A超市買100個、單獨在B超市買100個、兩家超市共買100個進行討論即可得.【詳解】(1)設這種籃球的標價為每個x元,依題意,得,解得:x=50,經檢驗:x=50是原方程的解,且符合題意,答:這種籃球的標價為每個50元;(2)購買100個籃球,最少的費用為3850元,單獨在A超市一次買100個,則需要費用:100×50×0.9-300=4200元,在A超市分兩次購買,每次各買50個,則需要費用:2(50×50×0.9-300)=3900元,單獨在B超市購買:100×50×0.8=4000元,在A、B兩個超市共買100個,根據A超市的方案可知在A超市一次購買:=44,即購買45個時花費最小,為45×50×0.9-300=1725元,兩次購買,每次各買45個,需要1725×2=3450元,其余10個在B超市購買,需要10×50×0.8=400元,這樣一共需要3450+400=3850元,綜上可知最少費用的購買方案:在A超市分兩次購買,每次購買45個籃球,費用共為3450元;在B超市購買10個,費用400元,兩超市購買100個籃球總費用3850元.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.23、證明見解析.【解析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“點睛”此題主要考查全等三角形的判定與性質和平行線的性質等知識點的理解和掌握,此題的關鍵是利用平行線的性質求證△ABC和△FDC全等.24、(1)C;(2)①60;②E(,1);③點F的橫坐標x的取值范圍≤xF≤.【解析】
(1)由題意線段MN關于點O的關聯點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件;
(2)①如圖3-1中,作NH⊥x軸于H.求出∠MON的大小即可解決問題;
②如圖3-2中,結論:△MNE是等邊三角形.由∠MON+∠MEN=180°,推出M、O、N、E四點共圓,可得∠MNE=∠MOE=60°,由此即可解決問題;
③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,首先證明點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),觀察圖形即可解決問題;【詳解】(1)由題意線段MN關于點O的關聯點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件,
故答案為C.
(2)①如圖3-1中,作NH⊥x軸于H.
∵N(,-),
∴tan∠NOH=,
∴∠NOH=30°,
∠MON=90°+30°=120°,
∵點D是線段MN關于點O的關聯點,
∴∠MDN+∠MON=180°,
∴∠MDN=60°.
故答案為60°.
②如圖3-2中,結論:△MNE是等邊三角形.
理由:作EK⊥x軸于K.
∵E(,1),
∴tan∠EOK=,
∴∠EOK=30°,
∴∠MOE=60°,
∵∠MON+∠MEN=180°,
∴M、O、N、E四點共圓,
∴∠MNE=∠MOE=60°,
∵∠MEN=60°,
∴∠MEN=∠MNE=∠NME=60°,
∴△MNE是等邊三角形.③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,
易知E(,1),
∴點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),
觀察圖象可知滿足條件的點F的橫坐標x的取值范圍≤xF≤.【點睛】此題考查一次函數綜合題,直線與圓的位置關系,等邊三角形的判定和性質,銳角三角函數,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.25、(1)y=x2﹣2x﹣3;(2);(3)當k發(fā)生改變時,直線QH過定點,定點坐標為(0,﹣2)【解析】
(1)把點A(﹣1,0),C(0,﹣3)代入拋物線表達式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設N的坐標為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設點P(x1,y1),Q(x2,y2),則點H(﹣x1,y1),設直線HQ表達式為y=ax+t,用待定系數法和韋達定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(0,﹣2).【詳解】解:(1)∵拋物線y=x2+bx+c經過點A、C,把點A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點坐標E(1,﹣4),設N的坐標為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當時,m最小值為;當n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024酒水購銷合同模板
- 2024三方運輸合同的范本
- 2024購銷水泥合同范文
- 標準房屋轉讓協(xié)議樣本
- 2024房屋拆遷合同范本
- 2024機械設備購銷合同范本
- 建筑材料銷售合同模板:建筑材料買賣合同參考
- 2024居室裝飾裝修施工合同范本
- 2024年民事調解協(xié)議書參考范本
- 標準服務合同范例大全
- 樁基晚上施工方案
- 電梯安全質量管理體系建立
- 工廠改造施工方案
- 初中英語新課程標準詞匯表
- 《春節(jié)的文化與習俗》課件
- 手機棋牌平臺網絡游戲商業(yè)計劃書
- 學校體育與社區(qū)體育融合發(fā)展的研究
- 醫(yī)療機構高警示藥品風險管理規(guī)范(2023版)
- 一年級體質健康數據
- 八年級物理(上)期中考試分析與教學反思
- 國家開放大學《財政與金融(農)》形考任務1-4參考答案
評論
0/150
提交評論