版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在邊長(zhǎng)為的菱形中,,沿對(duì)角線(xiàn)折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.2.已知直線(xiàn)和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要3.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線(xiàn)性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線(xiàn)性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln24.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.5.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?6.已知雙曲線(xiàn)()的漸近線(xiàn)方程為,則()A. B. C. D.7.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.8.已知橢圓,直線(xiàn)與直線(xiàn)相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.9.下列圖形中,不是三棱柱展開(kāi)圖的是()A. B. C. D.10.直線(xiàn)與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切11.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,又稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類(lèi)比“趙爽弦圖”,可類(lèi)似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.12.已知雙曲線(xiàn),過(guò)原點(diǎn)作一條傾斜角為直線(xiàn)分別交雙曲線(xiàn)左、右兩支P,Q兩點(diǎn),以線(xiàn)段PQ為直徑的圓過(guò)右焦點(diǎn)F,則雙曲線(xiàn)離心率為A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四件參賽作品,只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說(shuō):“或作品獲得一等獎(jiǎng)”;乙說(shuō):“作品獲得一等獎(jiǎng)”;丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說(shuō):“作品獲得一等獎(jiǎng)”.若這四位同學(xué)中有且只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是______.15.若復(fù)數(shù)滿(mǎn)足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為_(kāi)____.16.拋物線(xiàn)上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)從拋物線(xiàn)C:()外一點(diǎn)作該拋物線(xiàn)的兩條切線(xiàn)PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線(xiàn)C上,且(F為拋物線(xiàn)的焦點(diǎn)).(1)求拋物線(xiàn)C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.18.(12分)在平面直角坐標(biāo)系中,,,且滿(mǎn)足(1)求點(diǎn)的軌跡的方程;(2)過(guò),作直線(xiàn)交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線(xiàn)的方程.19.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長(zhǎng)為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)圓上任意一點(diǎn)P作圓E的切線(xiàn)l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.21.(12分)已知直線(xiàn)l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請(qǐng)分別把直線(xiàn)l和圓C的方程化為直角坐標(biāo)方程;(2)求直線(xiàn)l被圓截得的弦長(zhǎng).22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.2.B【解析】
由線(xiàn)面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線(xiàn)面垂直,線(xiàn)線(xiàn)垂直的判定,屬于中檔題.3.B【解析】
將u=lny,v=(x-4)2代入線(xiàn)性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線(xiàn)性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線(xiàn)性相關(guān)的二次擬合問(wèn)題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.4.B【解析】
利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號(hào)無(wú)法判斷,故與,與的大小不確定,對(duì)A,當(dāng)時(shí),,故A錯(cuò)誤;對(duì)C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)D,當(dāng)時(shí),,故D錯(cuò)誤;對(duì)B,對(duì),則,故B正確.故選:B.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運(yùn)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.5.B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.6.A【解析】
根據(jù)雙曲線(xiàn)方程(),確定焦點(diǎn)位置,再根據(jù)漸近線(xiàn)方程得到求解.【詳解】因?yàn)殡p曲線(xiàn)(),所以,又因?yàn)闈u近線(xiàn)方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線(xiàn)的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7.B【解析】
由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線(xiàn)中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.8.A【解析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線(xiàn)過(guò)橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡(jiǎn)后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線(xiàn)過(guò)點(diǎn),直線(xiàn)過(guò)點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線(xiàn)的離心率,所以.故選:A【點(diǎn)睛】本小題主要考查直線(xiàn)與直線(xiàn)的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.9.C【解析】
根據(jù)三棱柱的展開(kāi)圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開(kāi)圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開(kāi)圖的判斷,屬于基礎(chǔ)題.10.D【解析】
由幾何法求出圓心到直線(xiàn)的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線(xiàn)的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線(xiàn)與圓的位置關(guān)系,屬于基礎(chǔ)題.11.D【解析】
設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.12.B【解析】
求得直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和雙曲線(xiàn)的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡(jiǎn)后求得離心率.【詳解】設(shè),依題意直線(xiàn)的方程為,代入雙曲線(xiàn)方程并化簡(jiǎn)得,故,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過(guò)點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.【點(diǎn)睛】本小題主要考查直線(xiàn)和雙曲線(xiàn)的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡(jiǎn)并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點(diǎn)睛】本題考查了平面向量模的求法及簡(jiǎn)單應(yīng)用,平面向量數(shù)量積的定義及運(yùn)算,屬于基礎(chǔ)題.14.B【解析】
首先根據(jù)“學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng)”,故假設(shè)分別為一等獎(jiǎng),然后判斷甲、乙、丙、丁四位同學(xué)的說(shuō)法的正確性,即可得出結(jié)果.【詳解】若A為一等獎(jiǎng),則甲、丙、丁的說(shuō)法均錯(cuò)誤,不滿(mǎn)足題意;若B為一等獎(jiǎng),則乙、丙的說(shuō)法正確,甲、丁的說(shuō)法錯(cuò)誤,滿(mǎn)足題意;若C為一等獎(jiǎng),則甲、丙、丁的說(shuō)法均正確,不滿(mǎn)足題意;若D為一等獎(jiǎng),則乙、丙、丁的說(shuō)法均錯(cuò)誤,不滿(mǎn)足題意;綜上所述,故B獲得一等獎(jiǎng).【點(diǎn)睛】本題屬于信息題,可根據(jù)題目所給信息來(lái)找出解題所需要的條件并得出答案,在做本題的時(shí)候,可以采用依次假設(shè)為一等獎(jiǎng)并通過(guò)是否滿(mǎn)足題目條件來(lái)判斷其是否正確.15.【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.16.【解析】
設(shè)拋物線(xiàn)上任意一點(diǎn)的坐標(biāo)為,根據(jù)拋物線(xiàn)的定義求得,并求出對(duì)應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線(xiàn)上任意一點(diǎn)的坐標(biāo)為,拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,由拋物線(xiàn)的定義得,解得,此時(shí).因此,拋物線(xiàn)上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為.故答案為:.【點(diǎn)睛】本題考查利用拋物線(xiàn)的定義求點(diǎn)的坐標(biāo),考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)①證明見(jiàn)解析;②能,.【解析】
(1)根據(jù)拋物線(xiàn)的定義,求出,即可求拋物線(xiàn)C的方程;(2)①設(shè),,寫(xiě)出切線(xiàn)的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線(xiàn)AB的方程,代入拋物線(xiàn)方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫(xiě)出點(diǎn)的坐標(biāo),,可得線(xiàn)段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線(xiàn)C的方程是.(2)①證明:由得,.設(shè),,則直線(xiàn)PA的方程為(?。?,則直線(xiàn)PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫海?,所以.設(shè)點(diǎn),則直線(xiàn)AB的方程為.由得,則,,所以,所以線(xiàn)段PQ被x軸平分,即被線(xiàn)段CD平分.在①中,令解得,所以,同理得,所以線(xiàn)段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€(xiàn)PQ的方程為,所以線(xiàn)段CD的中點(diǎn)在直線(xiàn)PQ上,即線(xiàn)段CD被線(xiàn)段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線(xiàn)的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線(xiàn)的方程,考查直線(xiàn)和拋物線(xiàn)的位置關(guān)系,屬于難題.18.(1).(2)的方程為.【解析】
(1)令,則,由此能求出點(diǎn)C的軌跡方程.(2)令,令直線(xiàn),聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線(xiàn)的方程。【詳解】解:(1)因?yàn)?,即直線(xiàn)的斜率分別為且,設(shè)點(diǎn),則,整理得.(2)令,易知直線(xiàn)不與軸重合,令直線(xiàn),與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線(xiàn)的方程為?!军c(diǎn)睛】本題考查橢圓方程、直線(xiàn)方程的求法,考查橢圓方程、橢圓與直線(xiàn)的位置關(guān)系,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫(xiě)成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)?,又(?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問(wèn)題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類(lèi)討論思想、邏輯推理能力;屬于中檔題.20.(1)(2)見(jiàn)解析【解析】
(1)由,周長(zhǎng),解得,即可求得標(biāo)準(zhǔn)方程.(2)通過(guò)特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過(guò)設(shè)直線(xiàn)的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)中如何進(jìn)行S分析計(jì)劃
- 高效協(xié)作的實(shí)踐指南計(jì)劃
- 2024-2025學(xué)年年七年級(jí)數(shù)學(xué)人教版下冊(cè)專(zhuān)題整合復(fù)習(xí)卷28.1 銳角三角函數(shù)(1)(含答案)-
- 促進(jìn)發(fā)展小班幼兒的成長(zhǎng)計(jì)劃
- 拋射劑相關(guān)行業(yè)投資方案
- 醫(yī)藥中間體相關(guān)行業(yè)投資方案
- 音響設(shè)備采購(gòu)招標(biāo)合同三篇
- 《故宮博物院教用》課件
- 車(chē)間配置窗簾報(bào)告范文
- 修身養(yǎng)性、贏在職場(chǎng)有效課件情商與影響力
- 國(guó)家糧食和物資儲(chǔ)備局招聘考試試題及答案
- 山東省菏澤市10校2023-2024學(xué)年高二上學(xué)期期末聯(lián)考地理試題(含答案解析)
- 初一數(shù)學(xué)期中考試分析
- 松果體區(qū)腫瘤護(hù)理
- 《施工現(xiàn)場(chǎng)安全防護(hù)標(biāo)準(zhǔn)化防高墜篇》測(cè)試附有答案
- 流動(dòng)資金貸款管理辦法培訓(xùn)1
- 期末測(cè)試(試題)-2023-2024學(xué)年冀教版英語(yǔ)五年級(jí)上冊(cè)
- 教育實(shí)習(xí)匯報(bào)課件
- 如何制作一個(gè)簡(jiǎn)易的動(dòng)物細(xì)胞模型
- 2024年便攜式X光機(jī)行業(yè)分析報(bào)告及未來(lái)發(fā)展趨勢(shì)
- 騰訊公司營(yíng)銷(xiāo)策略
評(píng)論
0/150
提交評(píng)論