版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的值是()A.1 B.﹣1 C.3 D.﹣32.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或23.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結(jié)論是(
).A. B. C. D.4.根據(jù)物理學家波義耳1662年的研究結(jié)果:在溫度不變的情況下,氣球內(nèi)氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關(guān)系的是()A. B.C. D.5.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算6.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.7.二次函數(shù)y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)8.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.29.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.10.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.11.﹣0.2的相反數(shù)是()A.0.2 B.±0.2 C.﹣0.2 D.212.一個多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,ABCD的周長為36,對角線AC,BD相交于點O.點E是CD的中點,BD=12,則△DOE的周長為.14.“若實數(shù)a,b,c滿足a<b<c,則a+b<c”,能夠說明該命題是假命題的一組a,b,c的值依次為_____.15.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.16.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.17.分解因式:=_______.18.的相反數(shù)是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)列方程解應用題:為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?20.(6分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是______;(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.21.(6分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.22.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=﹣x+2的圖象交x軸于點P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點的坐標.(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(點A在點B的左側(cè)),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標;若不存在,請說明理由.23.(8分)如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數(shù)的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.24.(10分)解方程組25.(10分)(1)|﹣2|+?tan30°+(2018﹣π)0-()-1(2)先化簡,再求值:(﹣1)÷,其中x的值從不等式組的整數(shù)解中選取.26.(12分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.27.(12分)解分式方程:.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
直接利用立方根的定義化簡得出答案.【詳解】因為(-1)3=-1,=﹣1.故選:B.【點睛】此題主要考查了立方根,正確把握立方根的定義是解題關(guān)鍵.,2、C【解析】
過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.3、D【解析】
根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進行分析可得出結(jié)論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).4、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關(guān)鍵是確定兩個變量之間的函數(shù)關(guān)系,然后利用實際意義確定其所在的象限.5、B【解析】
有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.6、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關(guān)鍵.7、C【解析】
根據(jù)二次函數(shù)解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數(shù)得到對稱軸是直線,則拋物線與軸的兩個交點坐標關(guān)于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關(guān)鍵是掌握拋物線的對稱性質(zhì).8、C【解析】
根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.9、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.10、C【解析】試題解析:左視圖如圖所示:故選C.11、A【解析】
根據(jù)相反數(shù)的定義進行解答即可.【詳解】負數(shù)的相反數(shù)是它的絕對值,所以﹣0.2的相反數(shù)是0.2.故選A.【點睛】本題主要考查相反數(shù)的定義,熟練掌握這個知識點是解題關(guān)鍵.12、B【解析】
多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設這個多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設這個多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】∵ABCD的周長為33,∴2(BC+CD)=33,則BC+CD=2.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=3.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD.∴OE=BC.∴△DOE的周長="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周長為1.14、答案不唯一,如1,2,3;【解析】分析:設a,b,c是任意實數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,舉例即可,本題答案不唯一詳解:設a,b,c是任意實數(shù).若a<b<c,則a+b<c”是假命題,則若a<b<c,則a+b≥c”是真命題,可設a,b,c的值依次1,2,3,(答案不唯一),故答案為1,2,3.點睛:本題考查了命題的真假,舉例說明即可,15、-1.【解析】
設正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標,代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.16、17【解析】
先利用完全平方公式展開,然后再求和.【詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.17、.【解析】
將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.18、﹣.【解析】
根據(jù)只有符號不同的兩個數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.【點睛】本題考查的知識點是相反數(shù),解題關(guān)鍵是熟記相反數(shù)的概念.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【解析】
設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據(jù)“甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天”列出方程求解即可.【詳解】解:設甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.根據(jù)題意得:1200x解得:x=1.經(jīng)檢驗:x=1是原方程的解且符合實際問題的意義.∴1.2x=1.2×1=2.答:甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【點睛】此題考查了分式方程的應用,找出等量關(guān)系為兩廣告公司的工作時間的差為10天是解題的關(guān)鍵.20、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】
(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當點E在DC邊上且不是DC的中點時,(1)中的結(jié)論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如圖3,,∵CK≤AC+AK,∴當C、A、K三點共線時,CK的長最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即線段CK長的最大值是.考點:四邊形綜合題.21、(1)證明見解析;(2)補圖見解析;.【解析】
根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結(jié)論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據(jù)平行四邊形的面積公式即可得到結(jié)論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.22、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,點M(,0).理由見解析.【解析】
(1)由根與系數(shù)的關(guān)系,結(jié)合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數(shù)的解析式,再求得該二次函數(shù)圖象的頂點的坐標即可;(2)存在,將拋物線表達式和一次函數(shù)y=﹣x+2聯(lián)立并解得x=0或,即可得點A、B的坐標為(0,2)、(,),由此求得PB=,AP=2,過點B作BM⊥AB交x軸于點M,證得△APO∽△MPB,根據(jù)相似三角形的性質(zhì)可得,代入數(shù)據(jù)即可求得MP=,再求得OM=,即可得點M的坐標為(,0).【詳解】(1)由題意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,拋物線的表達式為:y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,理由:將拋物線表達式和一次函數(shù)y=﹣x+2聯(lián)立并解得:x=0或,∴點A、B的坐標為(0,2)、(,),一次函數(shù)y=﹣x+2與x軸的交點P的坐標為(6,0),∵點P的坐標為(6,0),B的坐標為(,),點B的坐標為(0,2)、∴PB==,AP==2過點B作BM⊥AB交x軸于點M,∵∠MBP=∠AOP=90°,∠MPB=∠APO,∴△APO∽△MPB,∴,∴,∴MP=,∴OM=OP﹣MP=6﹣=,∴點M(,0).【點睛】本題是一道二次函數(shù)的綜合題,一元二次方程根與系數(shù)的關(guān)系、直線與拋物線的較大坐標.相似三角形的判定與性質(zhì),題目較為綜合,有一定的難度,解決第二問的關(guān)鍵是求得PB、AP的長,再利用相似三角形的性質(zhì)解決問題.23、(1);(2)P點坐標為,;(3)或或或.【解析】
(1)根據(jù)待定系數(shù)法把A、C兩點坐標代入可求得二次函數(shù)的解析式;
(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據(jù)二次函數(shù)的性質(zhì)可求得其面積的最大值及P點坐標;
(3)首先設出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數(shù)的解析式為;(2)在中,令可得,解得或,,且,∴經(jīng)過、兩點的直線為,設點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【點睛】本題考查了待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.24、【解析】解:由①得③把③代入②得把代人③得∴原方程組的解為25、(1)-1(1)-1【解析】
(1)先根據(jù)根據(jù)絕對值的意義、立方根的意義、特殊角的三角函數(shù)值、零指數(shù)冪、負整數(shù)指數(shù)冪的意義化簡,然后按照實數(shù)的運算法則計算即可;(1)把括號里通分,把的分子、分母分解因式約分,然后把除法轉(zhuǎn)化為乘法計算;然后求出不等式組的整數(shù)解,選一個使分式有意義的值代入計算即可.【詳解】(1)原式=1+3×+1﹣5=1++1﹣5=﹣1;(1)原式====﹣,解不等式組得:-1≤x則不等式組的整數(shù)解為﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,則原式=﹣=﹣1.【點睛】本題考查了實數(shù)的運算,分式的化簡求值,不等式組的解法.熟練掌握各知識點是解答本題的關(guān)鍵,本題的易錯點是容易忽視分式有意義的條件.26、(1)∠QEP=60°;(2)∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度駕校與交通安全設施生產(chǎn)企業(yè)合作協(xié)議3篇
- 二零二五年度智能家居控制系統(tǒng)第三方擔保購銷合同
- 外交部釣魚臺賓館管理局高校畢業(yè)生補招高頻重點提升(共500題)附帶答案詳解
- 國網(wǎng)綜合能源服務集團限公司2025年招聘高校畢業(yè)生21人(第一批)高頻重點提升(共500題)附帶答案詳解
- 國家統(tǒng)計局來賓調(diào)查隊(廣西)公開招考1名編外工作人員高頻重點提升(共500題)附帶答案詳解
- 二零二五年度環(huán)保節(jié)能技術(shù)服務訂單式購銷合同
- 四川德陽廣漢市農(nóng)業(yè)技術(shù)推廣站廣漢市特色產(chǎn)業(yè)發(fā)展服務中心招聘2人歷年高頻重點提升(共500題)附帶答案詳解
- 四川2025年平昌縣事業(yè)單位招考高頻重點提升(共500題)附帶答案詳解
- 廈門市機關(guān)事務管理局補充招考2名非在編工作人員高頻重點提升(共500題)附帶答案詳解
- 南京市溧水區(qū)國企業(yè)招考25人高頻重點提升(共500題)附帶答案詳解
- 2025北京昌平初二(上)期末數(shù)學真題試卷(含答案解析)
- 西式面點師試題與答案
- 廣東省廣州市海珠區(qū)2023-2024學年九年級上學期期末語文試題(答案)
- 小區(qū)智能化系統(tǒng)工程施工組織設計方案
- 單位內(nèi)部治安保衛(wèi)制度
- 【8物(科)期末】合肥市蜀山區(qū)2023-2024學年八年級上學期期末物理試題
- GB/T 44990-2024激光熔覆修復層界面結(jié)合強度試驗方法
- ps經(jīng)典課程-海報設計(第六講)
- 鋼結(jié)構(gòu)連廊專項吊裝方案(通過專家論證)
- 50MWp漁光互補光伏電站項目錘樁施工方案
- 2025免疫規(guī)劃工作計劃
評論
0/150
提交評論