四川省南充市閬2023學(xué)年中考數(shù)學(xué)仿真試卷含解析及點(diǎn)睛_第1頁
四川省南充市閬2023學(xué)年中考數(shù)學(xué)仿真試卷含解析及點(diǎn)睛_第2頁
四川省南充市閬2023學(xué)年中考數(shù)學(xué)仿真試卷含解析及點(diǎn)睛_第3頁
四川省南充市閬2023學(xué)年中考數(shù)學(xué)仿真試卷含解析及點(diǎn)睛_第4頁
四川省南充市閬2023學(xué)年中考數(shù)學(xué)仿真試卷含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一張考卷上,小華寫下如下結(jié)論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認(rèn)為有公共頂點(diǎn)且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.2.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤23.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.64.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點(diǎn)坐標(biāo)是(1,2)C.當(dāng)x>1時,y隨x的增大而減小D.圖象與y軸的交點(diǎn)坐標(biāo)為(0,2)5.如圖,在中,,將折疊,使點(diǎn)落在邊上的點(diǎn)處,為折痕,若,則的值為()A. B. C. D.6.在同一直角坐標(biāo)系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點(diǎn)A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.17.下列運(yùn)算不正確的是A.a(chǎn)5+C.2a28.為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點(diǎn)E為矩形ABCD邊AD的中點(diǎn),在矩形ABCD的四個頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動員的越野進(jìn)程,其中一位運(yùn)動員P從點(diǎn)B出發(fā),沿著B﹣E﹣D的路線勻速行進(jìn),到達(dá)點(diǎn)D.設(shè)運(yùn)動員P的運(yùn)動時間為t,到監(jiān)測點(diǎn)的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點(diǎn)A B.監(jiān)測點(diǎn)B C.監(jiān)測點(diǎn)C D.監(jiān)測點(diǎn)D9.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實(shí)數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④10.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體二、填空題(共7小題,每小題3分,滿分21分)11.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.12.已知關(guān)于的一元二次方程的兩個實(shí)數(shù)根分別是x=-2,x=4,則的值為________.13.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.14.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為_____.15.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)16.如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)P到射線OA的距離為m,點(diǎn)P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)17.如圖,△ABC中,AB=AC,D是AB上的一點(diǎn),且AD=AB,DF∥BC,E為BD的中點(diǎn).若EF⊥AC,BC=6,則四邊形DBCF的面積為____.三、解答題(共7小題,滿分69分)18.(10分)定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.19.(5分)已知頂點(diǎn)為A的拋物線y=a(x-)2-2經(jīng)過點(diǎn)B(-,2),點(diǎn)C(,2).(1)求拋物線的表達(dá)式;(2)如圖1,直線AB與x軸相交于點(diǎn)M,與y軸相交于點(diǎn)E,拋物線與y軸相交于點(diǎn)F,在直線AB上有一點(diǎn)P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點(diǎn)Q是折線A-B-C上一點(diǎn),過點(diǎn)Q作QN∥y軸,過點(diǎn)E作EN∥x軸,直線QN與直線EN相交于點(diǎn)N,連接QE,將△QEN沿QE翻折得到△QEN′,若點(diǎn)N′落在x軸上,請直接寫出Q點(diǎn)的坐標(biāo).20.(8分)(1)計算:;(2)解不等式組:21.(10分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點(diǎn),點(diǎn)是劣弧的中點(diǎn),,,求的長.22.(10分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補(bǔ)充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A,B兩班的概率.23.(12分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實(shí)數(shù)m取何值,方程總有兩個實(shí)數(shù)根;(2)若方程有一個根的平方等于4,求m的值.24.(14分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

首先判斷出四個結(jié)論的錯誤個數(shù)和正確個數(shù),進(jìn)而可得m、n的值,再計算出即可.【詳解】解:有公共頂點(diǎn)且相等的兩個角是對頂角,錯誤;

,正確;

,錯誤;

若,則它們互余,錯誤;

則,,

,

故選D.【點(diǎn)睛】此題主要考查了二次根式的乘除、對頂角、科學(xué)記數(shù)法、余角和負(fù)整數(shù)指數(shù)冪,關(guān)鍵是正確確定m、n的值.2、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時,設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.3、A【解析】

根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A4、B【解析】

由拋物線解析式可求得其開口方向、頂點(diǎn)坐標(biāo)、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因?yàn)閍=3>0,所以開口向上,錯誤;B、頂點(diǎn)坐標(biāo)是(1,2),正確;C、當(dāng)x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點(diǎn)坐標(biāo)為(0,5),錯誤;故選:B.【點(diǎn)睛】考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).5、B【解析】

根據(jù)折疊的性質(zhì)可知AE=DE=3,然后根據(jù)勾股定理求CD的長,然后利用正弦公式進(jìn)行計算即可.【詳解】解:由折疊性質(zhì)可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點(diǎn)睛】本題考查折疊的性質(zhì),勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關(guān)鍵.6、D【解析】

本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質(zhì).【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點(diǎn)睛】巧妙借助三點(diǎn)縱坐標(biāo)相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.7、B【解析】(-2a8、C【解析】試題解析:、由監(jiān)測點(diǎn)監(jiān)測時,函數(shù)值隨的增大先減少再增大.故選項錯誤;、由監(jiān)測點(diǎn)監(jiān)測時,函數(shù)值隨的增大而增大,故選項錯誤;、由監(jiān)測點(diǎn)監(jiān)測時,函數(shù)值隨的增大先減小再增大,然后再減小,選項正確;、由監(jiān)測點(diǎn)監(jiān)測時,函數(shù)值隨的增大而減小,選項錯誤.故選.9、A【解析】設(shè)(1)如果存在兩個實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當(dāng)x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點(diǎn)的橫坐標(biāo),故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當(dāng)x=m、n、s時,對應(yīng)的y值相等,因此m、n、s中至少有兩個數(shù)是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點(diǎn),所以此時一定存在兩個實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負(fù)無法確定,此時的圖象與x軸的交點(diǎn)情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.10、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進(jìn)行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點(diǎn)睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、110°.【解析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.12、-10【解析】

根據(jù)根與系數(shù)的關(guān)系得出-2+4=-m,-2×4=n,求出即可.【詳解】∵關(guān)于x的一元二次方程的兩個實(shí)數(shù)根分別為x=-2,x=4,∴?2+4=?m,?2×4=n,解得:m=?2,n=?8,∴m+n=?10,故答案為:-10【點(diǎn)睛】此題考查根與系數(shù)的關(guān)系,掌握運(yùn)算法則是解題關(guān)鍵13、【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBF﹣S△ABD即可求解.【詳解】如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=.故答案是:.【點(diǎn)睛】本題考查了扇形的面積計算以及全等三角形的判定與性質(zhì)等知識,根據(jù)已知得出四邊形GBHD的面積等于△ABD的面積是解題關(guān)鍵.14、(,1)或(﹣,1)【解析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點(diǎn)坐標(biāo)即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.當(dāng)y=1時,x1-1=1,解得x=±當(dāng)y=-1時,x1-1=-1,方程無解故P點(diǎn)的坐標(biāo)為()或(-)【點(diǎn)睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.15、9.1【解析】

建立直角坐標(biāo)系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點(diǎn)的縱坐標(biāo)【詳解】如圖,以地面為x軸,門洞中點(diǎn)為O點(diǎn),畫出y軸,建立直角坐標(biāo)系由題意可知各點(diǎn)坐標(biāo)為A(-4,0)B(4,0)D(-3,4)設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點(diǎn)帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點(diǎn)睛】本題考查二次函數(shù)的簡單應(yīng)用,能夠建立直角坐標(biāo)系解出二次函數(shù)解析式是本題關(guān)鍵16、>【解析】

由圖像可知在射線OP上有一個特殊點(diǎn)Q,點(diǎn)Q到射線OA的距離QD=2,點(diǎn)Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數(shù)sin∠AOP>【詳解】由題意可知:找到特殊點(diǎn)Q,如圖所示:設(shè)點(diǎn)Q到射線OA的距離QD,點(diǎn)Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點(diǎn)睛】本題考查了點(diǎn)到線的距離,熟知在直角三角形中利用三角函數(shù)來解角和邊的關(guān)系是解題關(guān)鍵.17、2【解析】

解:如圖,過D點(diǎn)作DG⊥AC,垂足為G,過A點(diǎn)作AH⊥BC,垂足為H,∵AB=AC,點(diǎn)E為BD的中點(diǎn),且AD=AB,∴設(shè)BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.三、解答題(共7小題,滿分69分)18、(1)等腰三角形;線段的垂直平分線上的點(diǎn)到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點(diǎn)到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為19、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【解析】

(1)將點(diǎn)B坐標(biāo)代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據(jù)此證△OPE∽△FAE得===,即OP=FA,設(shè)點(diǎn)P(t,-2t-1),列出關(guān)于t的方程解之可得;(3)分點(diǎn)Q在AB上運(yùn)動、點(diǎn)Q在BC上運(yùn)動且Q在y軸左側(cè)、點(diǎn)Q在BC上運(yùn)動且點(diǎn)Q在y軸右側(cè)這三種情況分類討論即可得.【詳解】解:(1)把點(diǎn)B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達(dá)式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設(shè)直線AB表達(dá)式為y=kx+b,代入點(diǎn)A,B的坐標(biāo)得,解得,∴直線AB的表達(dá)式為y=-2x-1,易求E(0,-1),F(xiàn)(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設(shè)點(diǎn)P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當(dāng)t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點(diǎn)Q在AB上運(yùn)動,過N′作直線RS∥y軸,交QR于點(diǎn)R,交NE的延長線于點(diǎn)S,設(shè)Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點(diǎn)Q在BC上運(yùn)動,且Q在y軸左側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點(diǎn)Q在BC上運(yùn)動,且點(diǎn)Q在y軸右側(cè),過N′作直線RS∥y軸,交BC于點(diǎn)R,交NE的延長線于點(diǎn)S.設(shè)NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點(diǎn)Q的坐標(biāo)為(-,)或(-,2)或(,2).【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、翻折變換的性質(zhì)及勾股定理等知識點(diǎn).20、(1);(2).【解析】

(1)根據(jù)冪的運(yùn)算與實(shí)數(shù)的運(yùn)算性質(zhì)計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算和解一元一次不等式組,熟練掌握和運(yùn)用相關(guān)運(yùn)算性質(zhì)是解答關(guān)鍵.21、(1)詳見解析;(2)【解析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結(jié)OA,

∵OA=OB,OC⊥AB,

∴∠AOC=∠BOC,

又∠BAD=∠BOC,

∴∠BAD=∠AOC

∵∠AOC+∠OAC=90°,

∴∠BAD+∠OAC=90°,

∴OA⊥AD,

即:直線AD是⊙O的切線;

(2)分別連結(jié)OP、PE、AE,OP交AE于F點(diǎn),

∵BE是直徑,

∴∠EAB=90°,

∴OC∥AE,

∵OB=,

∴BE=13

∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4

在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,

在直角△PEB中,BE=13,PB2=BE2-PE2,

PB==3.【點(diǎn)睛】本題考查了切線的判定,勾股

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論