初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇_第1頁
初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇_第2頁
初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇_第3頁
初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇_第4頁
初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第初三上冊數(shù)學(xué)學(xué)習(xí)資料4篇初三上冊數(shù)學(xué)學(xué)習(xí)資料1

知識點1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。

2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。

3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

知識點2:直角坐標(biāo)系與點的位置

1、直角坐標(biāo)系中,點A(3,0)在y軸上。

2、直角坐標(biāo)系中,x軸上的任意點的橫坐標(biāo)為0。

3、直角坐標(biāo)系中,點A(1,1)在第一象限。

4、直角坐標(biāo)系中,點A(-2,3)在第四象限。

5、直角坐標(biāo)系中,點A(-2,1)在第二象限。

知識點3:已知自變量的值求函數(shù)值

1、當(dāng)x=2時,函數(shù)y=的值為1。

2、當(dāng)x=3時,函數(shù)y=的值為1。

3、當(dāng)x=-1時,函數(shù)y=的值為1。

知識點4:基本函數(shù)的概念及性質(zhì)

1、函數(shù)y=-8x是一次函數(shù)。

2、函數(shù)y=4x+1是正比例函數(shù)。

3、函數(shù)是反比例函數(shù)。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標(biāo)是(1,2)。

7、反比例函數(shù)的圖象在第一、三象限。

知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

知識點6:特殊三角函數(shù)值

1.cos30°=。

2.sin260°+cos260°=1。

3.2sin30°+tan45°=2。

4.tan45°=1。

5.cos60°+sin30°=1。

知識點7:圓的基本性質(zhì)

1、半圓或直徑所對的圓周角是直角。

2、任意一個三角形一定有一個外接圓。

3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

4、在同圓或等圓中,相等的圓心角所對的弧相等。

5、同弧所對的圓周角等于圓心角的一半。

6、同圓或等圓的半徑相等。

7、過三個點一定可以作一個圓。

8、長度相等的兩條弧是等弧。

9、在同圓或等圓中,相等的圓心角所對的弧相等。

10、經(jīng)過圓心平分弦的直徑垂直于弦。

知識點8:直線與圓的位置關(guān)系

1、直線與圓有公共點時,叫做直線與圓相切。

2、三角形的外接圓的圓心叫做三角形的外心。

3、弦切角等于所夾的弧所對的圓心角。

4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

5、垂直于半徑的直線必為圓的切線。

6、過半徑的外端點并且垂直于半徑的直線是圓的切線。

7、垂直于半徑的直線是圓的切線。

8、圓的切線垂直于過切點的半徑。

初三上冊數(shù)學(xué)學(xué)習(xí)資料2

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內(nèi),到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經(jīng)過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、?。簣A上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小于半圓周的弧。

(2)優(yōu)?。捍笥诎雸A周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質(zhì)

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設(shè)⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角的外心就是斜邊的中點。)

8、直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、中,A(x1,y1)、B(x2,y2)。

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經(jīng)過半徑的外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(zhì)(補充)。

(1)經(jīng)過切點的直徑一定垂直于切線。

(2)經(jīng)過切點并且垂直于這條切線的直線一定經(jīng)過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O于點A、B

∴PA=PB,∠1=∠2。

13、內(nèi)切圓及有關(guān)計算。

(1)內(nèi)切圓的圓心是三個內(nèi)角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

求:AD、BE、CF的長。

分析:設(shè)AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內(nèi)切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交于點P,則PA?PB=PC?PD。

(3)切割線定理。

如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB?PC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。

15、圓與圓的位置關(guān)系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內(nèi)切:d=r1-r2,交點有1個;

內(nèi)含:0≤d

(2)性質(zhì)。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經(jīng)過切點。

16、圓中有關(guān)量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

(2)扇形的面積用S表示。

(3)圓錐的側(cè)面展開圖是扇形。

r為底面圓的半徑,a為母線長。

初三上冊數(shù)學(xué)學(xué)習(xí)資料3

1、絕對值

一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù),絕對值大的反而小。

(1)一個正實數(shù)的絕對值是它本身;一個負(fù)實數(shù)的絕對值是它的相反數(shù);0的絕對值是0.即:﹝另有兩種寫法﹞

(2)實數(shù)的絕對值是一個非負(fù)數(shù),從數(shù)軸上看,一個實數(shù)的絕對值就是數(shù)軸上表示這個數(shù)的點到原點的距離.

(3)幾個非負(fù)數(shù)的和等于零則每個非負(fù)數(shù)都等于零。

注意:│a│≥0,符號"││"是"非負(fù)數(shù)"的標(biāo)志;數(shù)a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號。

2、解一元二次方程

解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。

(1)直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).

直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.

(2)配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。

1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)系數(shù)化1:將二次項系數(shù)化為1

3)移項:將常數(shù)項移到等號右側(cè)

4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方

5)變形:將等號左邊的代數(shù)式寫成完全平方形式

6)開方:左右同時開平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

3、圓的必考知識點

(1)圓

在一個平面內(nèi),一動點以一定點為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對稱軸。

(2)圓的相關(guān)特點

1)徑

連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r

通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r

2)弦

連接圓上任意兩點的線段叫做弦.在同一個圓內(nèi)最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數(shù)條。

3)弧

圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。

大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個字母表示,劣弧一般用兩個字母表示。優(yōu)弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

4)角

頂點在圓心上的角叫做圓心角。

頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的.一半。

初三上冊數(shù)學(xué)學(xué)習(xí)資料4

第一單元二次根式

1、二次根式

式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數(shù)a必須是非負(fù)數(shù)。

2、最簡二次根式

若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。

化二次根式為最簡二次根式的方法和步驟:

1如果被開方數(shù)是分?jǐn)?shù)包括小數(shù)或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡。

2如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。

3、同類二次根式

幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

4、二次根式的性質(zhì)

5、二次根式混合運算

二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的或先去括號。

第二單元一元二次方程

一、一元二次方程

1、一元二次方程

含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式

,它的特征是:等式左邊十一個關(guān)于未知數(shù)x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項。

二、一元二次方程的解法

1、直接開平方法

2、配方法

配方法是一種重要的數(shù)學(xué)方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學(xué)的其

3、公式法

4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。

三、一元二次方程根的判別式

根的判別式

四、一元二次方程根與系數(shù)的關(guān)系

第三單元旋轉(zhuǎn)

一、旋轉(zhuǎn)

1、定義

把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

2、性質(zhì)

1對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

2對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。

二、中心對稱

1、定義

把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

2、性質(zhì)

1關(guān)于中心對稱的兩個圖形是全等形。

2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。

3關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行或在同一直線上且相等。

3、判定

如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。

4、中心對稱圖形

把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。

考點五、坐標(biāo)系中對稱點的特征

1、關(guān)于原點對稱的點的特征

兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點Px,y關(guān)于原點的對稱點為P’-x,-y

2、關(guān)于x軸對稱的點的特征

兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點Px,y關(guān)于x軸的對稱點為P’x,-y

3、關(guān)于y軸對稱的點的特征

兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點Px,y關(guān)于y軸的對稱點為P’-x,y

第四單元圓

一、圓的相關(guān)概念

1、圓的定義

在一個個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。

2、圓的幾何表示

以點O為圓心的圓記作“⊙O”,讀作“圓O”

二、弦、弧等與圓有關(guān)的定義

1弦

連接圓上任意兩點的線段叫做弦。如圖中的AB

2直徑

經(jīng)過圓心的弦叫做直徑。如途中的CD

直徑等于半徑的2倍。

3半圓

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。

4弧、優(yōu)弧、劣弧

圓上任意兩點間的部分叫做圓弧,簡稱弧。

弧用符號“⌒”表示,以A,B為端點的弧記作“”,讀作“圓弧AB”或“弧AB”。

大于半圓的弧叫做優(yōu)弧多用三個字母表示;小于半圓的弧叫做劣弧多用兩個字母表示

三、垂徑定理及其推論

垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。

推論1:1平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧。

2弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

3平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。

推論2:圓的兩條平行弦所夾的弧相等。

垂徑定理及其推論可概括為:

過圓心

垂直于弦

直徑平分弦知二推三

平分弦所對的優(yōu)弧

平分弦所對的劣弧

四、圓的對稱性

1、圓的軸對稱性

圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

2、圓的中心對稱性

圓是以圓心為對稱中心的中心對稱圖形。

五、弧、弦、弦心距、圓心角之間的關(guān)系定理

1、圓心角

頂點在圓心的角叫做圓心角。

2、弦心距

從圓心到弦的距離叫做弦心距。

3、弧、弦、弦心距、圓心角之間的關(guān)系定理

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。

推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

六、圓周角定理及其推論

1、圓周角

頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等于它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

七、點和圓的位置關(guān)系

設(shè)⊙O的半徑是r,點P到圓心O的距離為d,則有:

d

d=r點P在⊙O上;

d>r點P在⊙O外。

八、過三點的圓

1、過三點的圓

不在同一直線上的三個點確定一個圓。

2、三角形的外接圓

經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。

4、圓內(nèi)接四邊形性質(zhì)四點共圓的判定條件

圓內(nèi)接四邊形對角互補。

九、反證法

先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法。

十、直線與圓的位置關(guān)系

直線和圓有三種位置關(guān)系,具體如下:

1相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;

2相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,

3相離:直線和圓沒有公共點時,叫做直線和圓相離。

如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

直線l與⊙O相交d

直線l與⊙O相切d=r;

直線l與⊙O相離d>r;

十一、切線的判定和性質(zhì)

1、切線的判定定理

經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

2、切線的性質(zhì)定理

圓的切線垂直于經(jīng)過切點的半徑。

十二、切線長定理

1、切線長

在經(jīng)過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。

2、切線長定理

從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

十三、三角形的內(nèi)切圓

1、三角形的內(nèi)切圓

與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。

2、三角形的內(nèi)心

三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心。

十四、圓和圓的位置關(guān)系

1、圓和圓的位置關(guān)系

如果兩個圓沒有公共點,那么就說這兩個圓相離,相離分為外離和內(nèi)含兩種。

如果兩個圓只有一個公共點,那么就說這兩個圓相切,相切分為外切和內(nèi)切兩種。

如果兩個圓有兩個公共點,那么就說這兩個圓相交。

2、圓心距

兩圓圓心的距離叫做兩圓的圓心距。

3、圓和圓位置關(guān)系的性質(zhì)與判定

設(shè)兩圓的半徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論