版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,若⊙O的半徑為5,AB=8,則CD的長(zhǎng)是()A.2B.3C.4D.52.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.23.“可燃冰”的開發(fā)成功,拉開了我國(guó)開發(fā)新能源的大門,目前發(fā)現(xiàn)我國(guó)南?!翱扇急眱?chǔ)存量達(dá)到800億噸,將800億用科學(xué)記數(shù)法可表示為()A.0.8×1011 B.8×1010 C.80×109 D.800×1084.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長(zhǎng)是()A. B.15 C. D.95.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為()A.7 B.8 C.9 D.106.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊7.已知:如圖,點(diǎn)P是正方形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長(zhǎng)為x,矩形PEBF的周長(zhǎng)為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.8.神舟十號(hào)飛船是我國(guó)“神州”系列飛船之一,每小時(shí)飛行約28000公里,將28000用科學(xué)記數(shù)法表示應(yīng)為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1059.如圖,下列四個(gè)圖形是由已知的四個(gè)立體圖形展開得到的,則對(duì)應(yīng)的標(biāo)號(hào)是A. B. C. D.10.如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)二、填空題(共7小題,每小題3分,滿分21分)11.已知點(diǎn)A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關(guān)系是:y1__y2;12.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關(guān)系為________.(填“>”或“<”)13.一個(gè)圓錐的三視圖如圖,則此圓錐的表面積為______.14.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為1.則k的值為_____.15.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.16.若4a+3b=1,則8a+6b-3的值為______.17.函數(shù)y=中,自變量x的取值范圍是________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點(diǎn).(1)求直線AB的解析式;(2)根據(jù)圖象寫出當(dāng)y1>y2時(shí),x的取值范圍;(3)若點(diǎn)P在y軸上,求PA+PB的最小值.19.(5分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達(dá)式.20.(8分)化簡(jiǎn)分式,并從0、1、2、3這四個(gè)數(shù)中取一個(gè)合適的數(shù)作為x的值代入求值.21.(10分)計(jì)算:()-1+()0+-2cos30°.22.(10分)如圖,已知二次函數(shù)的圖象與軸交于,兩點(diǎn)在左側(cè)),與軸交于點(diǎn),頂點(diǎn)為.(1)當(dāng)時(shí),求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對(duì)稱軸左側(cè)上存在一點(diǎn),使,求點(diǎn)的坐標(biāo);(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個(gè)單位時(shí),點(diǎn)為線段上一動(dòng)點(diǎn),軸交新拋物線于點(diǎn),延長(zhǎng)至,且,若的外角平分線交點(diǎn)在新拋物線上,求點(diǎn)坐標(biāo).23.(12分)如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.24.(14分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,此拋物線頂點(diǎn)C到x軸的距離為1.(1)求拋物線的表達(dá)式;(2)求∠CAB的正切值;(3)如果點(diǎn)P是x軸上的一點(diǎn),且∠ABP=∠CAO,直接寫出點(diǎn)P的坐標(biāo).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點(diǎn):垂徑定理;勾股定理.2、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.3、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將800億用科學(xué)記數(shù)法表示為:8×1.
故選:B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長(zhǎng),由FD與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,等量代換得到一對(duì)同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長(zhǎng).【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點(diǎn)睛】此題考查了翻折變換(折疊問題),涉及的知識(shí)有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.5、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為9個(gè),故選C.【點(diǎn)睛】考查了三視圖判定幾何體,關(guān)鍵是對(duì)三視圖靈活運(yùn)用,體現(xiàn)了對(duì)空間想象能力的考查.6、B【解析】分析:從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).解答:解:從俯視圖可得最底層有3個(gè)小正方體,由主視圖可得有2層上面一層是1個(gè)小正方體,下面有2個(gè)小正方體,從左視圖上看,后面一層是2個(gè)小正方體,前面有1個(gè)小正方體,所以此幾何體共有四個(gè)正方體.故選B.7、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長(zhǎng)等于2個(gè)正方形的邊長(zhǎng).則y=2x,為正比例函數(shù).故選A.8、C【解析】試題分析:28000=1.1×1.故選C.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).9、B【解析】
根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個(gè)圖形是②正方體的展開圖,第2個(gè)圖形是①圓柱體的展開圖,第3個(gè)圖形是③三棱柱的展開圖,第4個(gè)圖形是④四棱錐的展開圖,故選B【點(diǎn)睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.10、A【解析】
作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、>【解析】
根據(jù)反比例函數(shù)的性質(zhì)求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.也考查了反比例函數(shù)的性質(zhì).12、>【解析】
觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)小;波動(dòng)越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)?。粍t乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點(diǎn)睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.13、55πcm2【解析】
由正視圖和左視圖判斷出圓錐的半徑和母線長(zhǎng),然后根據(jù)圓錐的表面積公式求解即可.【詳解】由三視圖可知,半徑為5cm,圓錐母線長(zhǎng)為6cm,
∴表面積=π×5×6+π×52=55πcm2,故答案為:55πcm2.【點(diǎn)睛】本題考查了圓錐的計(jì)算,由該三視圖中的數(shù)據(jù)確定圓錐的底面直徑和母線長(zhǎng)是解本題的關(guān)鍵,本題體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.如果圓錐的底面半徑為r,母線長(zhǎng)為l,那么圓錐的表面積=πrl+πr2.14、3【解析】
連接OA.根據(jù)反比例函數(shù)的對(duì)稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點(diǎn)D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2
①.根據(jù)S△OAC=2,得出-a-b=2
②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點(diǎn)D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點(diǎn)作AM⊥x軸于點(diǎn)M,過C點(diǎn)作CN⊥x軸于點(diǎn)N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識(shí),綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對(duì)稱性得出OB=OC是解題的突破口.15、41【解析】
已知一元二次方程的根判別式為△=b2﹣4ac,代入計(jì)算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點(diǎn)睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關(guān)鍵.16、-1【解析】
先求出8a+6b的值,然后整體代入進(jìn)行計(jì)算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點(diǎn)睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.17、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負(fù)數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點(diǎn)睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負(fù)數(shù)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】
(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點(diǎn),即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當(dāng)1<x<1時(shí),正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當(dāng)y1>y2時(shí),x的取值范圍是1<x<1;(1)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C,連接BC交y軸于點(diǎn)P,則PA+PB的最小值等于BC的長(zhǎng),利用勾股定理即可得到BC的長(zhǎng).【詳解】(1)A(1,m)、B(n,1)兩點(diǎn)坐標(biāo)分別代入反比例函數(shù)y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數(shù)y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)1<x<1時(shí),正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴當(dāng)y1>y2時(shí),x的取值范圍是1<x<1.(1)如圖,作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C,連接BC交y軸于點(diǎn)P,則PA+PB的最小值等于BC的長(zhǎng),過C作y軸的平行線,過B作x軸的平行線,交于點(diǎn)D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點(diǎn)睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,根據(jù)函數(shù)圖象的上下位置關(guān)系結(jié)合交點(diǎn)的橫坐標(biāo),得出不等式的取值范圍是解答此題的關(guān)鍵.19、(1)y;(2)yx+1.【解析】
(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長(zhǎng),然后利用三角形的面積公式即可得到一個(gè)關(guān)于b的方程,求得b的值,進(jìn)而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點(diǎn)坐標(biāo)為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點(diǎn)B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點(diǎn)睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長(zhǎng)是解題的關(guān)鍵.20、x取0時(shí),為1或x取1時(shí),為2【解析】試題分析:利用分式的運(yùn)算,先對(duì)分式化簡(jiǎn)單,再選擇使分式有意義的數(shù)代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當(dāng)x=0時(shí),原式=1.或當(dāng)x=1時(shí),原式=2.21、4+2.【解析】
原式第一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第二項(xiàng)利用零指數(shù)冪法則計(jì)算,第三項(xiàng)化為最簡(jiǎn)二次根式,最后一項(xiàng)利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.【詳解】原式=3+1+3-2×=4+2.22、(1)4;(2),;(3).【解析】
(1)過點(diǎn)D作DE⊥x軸于點(diǎn)E,求出二次函數(shù)的頂點(diǎn)D的坐標(biāo),然后求出A、B、C的坐標(biāo),然后根據(jù)即可得出結(jié)論;(2)設(shè)點(diǎn)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過點(diǎn)作于,過點(diǎn)作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點(diǎn)D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點(diǎn),,過點(diǎn)作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點(diǎn)D作DE⊥x軸于點(diǎn)E當(dāng)時(shí),得到,頂點(diǎn),∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設(shè)點(diǎn)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過點(diǎn)作于,過點(diǎn)作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點(diǎn)在直線上,直線交軸于點(diǎn),如圖2,過點(diǎn)作軸于,;由題意,平移后的新拋物線頂點(diǎn)為,解析式為,設(shè)點(diǎn),,則,,,過點(diǎn)作于,于,軸于,,,、分別平分,,,點(diǎn)在拋物線上,,根據(jù)題意得:解得:【點(diǎn)睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.23、(1)見解析;(2)見解析.【解析】試題分析:(1)選?、佗?,利用ASA判定△BEO≌△DFO;也可選取②③,利用AAS判定△BEO≌△DFO;還可選?、佗?,利用SAS判定△BEO≌△DFO;(2)根據(jù)△BEO≌△DFO可得EO=FO,BO=DO,再根據(jù)等式的性質(zhì)可得AO=CO,根據(jù)兩條對(duì)角線互相平分的四邊形是平行四邊形可得結(jié)論.試題解析:證明:(1)選取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024酒店委托管理合同范本酒店委托管理合同范例
- 蘇州科技大學(xué)天平學(xué)院《裝飾基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年度店面租房合同模板
- 制糖企業(yè)市場(chǎng)拓展計(jì)劃考核試卷
- 可再生能源技術(shù)發(fā)展與應(yīng)用考核試卷
- 2024電力線路施工合同模板
- 2024專利技術(shù)轉(zhuǎn)讓合同范本
- 春節(jié)食品安全與爆竹安全
- 2024專利實(shí)施許可證轉(zhuǎn)讓合同
- 低溫倉儲(chǔ)的冷凝器及蒸發(fā)器選擇與使用考核試卷
- 連續(xù)梁施工作業(yè)要點(diǎn)手冊(cè)(支架現(xiàn)澆)
- 三年級(jí)習(xí)作:菊花教學(xué)指導(dǎo)(課堂PPT)
- 會(huì)議·宴會(huì)預(yù)訂單
- 個(gè)人醫(yī)德醫(yī)風(fēng)檔案
- 局組會(huì)議議題提報(bào)單模板
- 檢驗(yàn)科標(biāo)本拒收記錄
- 地下水池施工方案
- 世界氣溫和降水的分布
- 申請(qǐng)一年或多年多次往返申根簽證信
- 實(shí)踐與認(rèn)識(shí)的關(guān)系PPT課件
- 新人教版八年級(jí)英語上冊(cè)第六單元.ppt
評(píng)論
0/150
提交評(píng)論