2023屆福建省南平市浦城中考五模數(shù)學試題含解析及點睛_第1頁
2023屆福建省南平市浦城中考五模數(shù)學試題含解析及點睛_第2頁
2023屆福建省南平市浦城中考五模數(shù)學試題含解析及點睛_第3頁
2023屆福建省南平市浦城中考五模數(shù)學試題含解析及點睛_第4頁
2023屆福建省南平市浦城中考五模數(shù)學試題含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.tan45°的值等于()A. B. C. D.12.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a43.下列分式中,最簡分式是()A. B. C. D.4.若關(guān)于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<15.在下列網(wǎng)格中,小正方形的邊長為1,點A、B、O都在格點上,則的正弦值是A. B. C. D.6.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.7.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.8.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.69.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-210.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④二、填空題(本大題共6個小題,每小題3分,共18分)11.設[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫所有正確結(jié)論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數(shù)x,使[x)?x=0.5成立.12.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.13.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.14.函數(shù)y=+中,自變量x的取值范圍是_____.15.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到ΔA′B′C′,且點A在A′B′上,則旋轉(zhuǎn)角為________________°.16.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.三、解答題(共8題,共72分)17.(8分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?18.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標.19.(8分)如圖,用細線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(8分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大??;(Ⅱ)如圖②,當DE=BE時,求∠C的大?。?1.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.22.(10分)在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.23.(12分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.24.太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.2、D【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.3、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.4、C【解析】

將關(guān)于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.5、A【解析】

由題意根據(jù)勾股定理求出OA,進而根據(jù)正弦的定義進行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.6、C【解析】

如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.7、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.8、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.9、C【解析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小.10、D【解析】

①根據(jù)作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據(jù)作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識點是解答的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、④【解析】

根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數(shù)x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關(guān)鍵在于理解題意的運算法則.12、2【解析】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關(guān)系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點睛:此題主要是考查了三角形的三邊關(guān)系,同時注意整數(shù)這一條件.13、【解析】

延長AD和BC交于點E,在直角△ABE中利用三角函數(shù)求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.14、x≥﹣2且x≠1【解析】分析:根據(jù)使分式和二次根式有意義的要求列出關(guān)于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點睛:本題解題的關(guān)鍵是需注意:要使函數(shù)有意義,的取值需同時滿足兩個條件:和,二者缺一不可.15、50度【解析】

由將△ACB繞點C順時針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應關(guān)系,注意數(shù)形結(jié)合思想的應用.16、1.【解析】

連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.三、解答題(共8題,共72分)17、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】

(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設BD=x,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當,時有最大值1;(2)當,時有最大值,設,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數(shù)的應用等知識,解題的關(guān)鍵是學會利用參數(shù)構(gòu)建二次函數(shù)解決問題.18、(1)y=﹣2x+1;(2)點P的坐標為(﹣,0)或(,0).【解析】

(1)把A的坐標代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標代入反比例函數(shù)解析式,即可求出n,把A,B的坐標代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點A(﹣,2),∴m=﹣1.∴雙曲線的表達式為y=﹣.∵點B(n,﹣1)在雙曲線y=﹣上,∴點B的坐標為(1,﹣1).∵直線y=kx+b經(jīng)過點A(﹣,2),B(1,﹣1),∴,解得∴直線的表達式為y=﹣2x+1;(2)當y=﹣2x+1=0時,x=,∴點C(,0).設點P的坐標為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點P的坐標為(﹣,0)或(,0).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點的坐標利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.19、15cm【解析】試題分析:設細線OB的長度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數(shù)得出方程,解方程即可.試題解析:設細線OB的長度為xcm,作AD⊥OB于D,如圖所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四邊形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20、(Ⅰ)68°(Ⅱ)56°【解析】

(1)圓內(nèi)接四邊形的一個外角等于它的內(nèi)對角,利用圓內(nèi)接四邊形的性質(zhì)證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據(jù)同圓中,相等的弦所對弧相等,再根據(jù)同圓中,相等的弧所對圓周角相等,求出∠EAC,最后根據(jù)直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.【詳解】(Ⅰ)∵四邊形ABED圓內(nèi)接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【點睛】本題主要考查圓周角定理、直徑的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)等知識,解決本題的關(guān)鍵是靈活運用所學知識解決問題.21、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.22、(1)證明見解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論