2023屆福建省南平市浦城中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第1頁(yè)
2023屆福建省南平市浦城中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第2頁(yè)
2023屆福建省南平市浦城中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第3頁(yè)
2023屆福建省南平市浦城中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第4頁(yè)
2023屆福建省南平市浦城中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.tan45°的值等于()A. B. C. D.12.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a43.下列分式中,最簡(jiǎn)分式是()A. B. C. D.4.若關(guān)于x的一元二次方程x(x+2)=m總有兩個(gè)不相等的實(shí)數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<15.在下列網(wǎng)格中,小正方形的邊長(zhǎng)為1,點(diǎn)A、B、O都在格點(diǎn)上,則的正弦值是A. B. C. D.6.如圖,在中,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長(zhǎng)的最大值與最小值的和是()A. B. C. D.7.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.8.若正六邊形的邊長(zhǎng)為6,則其外接圓半徑為()A.3 B.3 C.3 D.69.在3,0,-2,-2四個(gè)數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-210.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫所有正確結(jié)論的序號(hào))①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實(shí)數(shù)x,使[x)?x=0.5成立.12.已知三角形兩邊的長(zhǎng)分別為1、5,第三邊長(zhǎng)為整數(shù),則第三邊的長(zhǎng)為_(kāi)____.13.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.14.函數(shù)y=+中,自變量x的取值范圍是_____.15.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到ΔA′B′C′,且點(diǎn)A在A′B′上,則旋轉(zhuǎn)角為_(kāi)_______________°.16.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.三、解答題(共8題,共72分)17.(8分)我們知道中,如果,,那么當(dāng)時(shí),的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時(shí)四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時(shí),四邊形面積最大?并求出最大面積是多少?18.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).19.(8分)如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來(lái)回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,∠AOB=66°,求細(xì)線OB的長(zhǎng)度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(8分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E(Ⅰ)如圖①,求∠CED的大小;(Ⅱ)如圖②,當(dāng)DE=BE時(shí),求∠C的大?。?1.(8分)(1)問(wèn)題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.(3)解決問(wèn)題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請(qǐng)直接寫出CD的長(zhǎng).22.(10分)在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請(qǐng)判斷△APQ是什么形狀的三角形?試說(shuō)明你的結(jié)論.23.(12分)已知:如圖,在□ABCD中,點(diǎn)G為對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)G的直線EF分別交邊AB、CD于點(diǎn)E、F,過(guò)點(diǎn)G的直線MN分別交邊AD、BC于點(diǎn)M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時(shí),求證:BE=BN.24.太原雙塔寺又名永祚寺,是國(guó)家級(jí)文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會(huì)實(shí)踐小組為了測(cè)量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測(cè)得EC=4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測(cè)得FG=6米,GC=53米.請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.2、D【解析】

各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.3、A【解析】試題分析:選項(xiàng)A為最簡(jiǎn)分式;選項(xiàng)B化簡(jiǎn)可得原式==;選項(xiàng)C化簡(jiǎn)可得原式==;選項(xiàng)D化簡(jiǎn)可得原式==,故答案選A.考點(diǎn):最簡(jiǎn)分式.4、C【解析】

將關(guān)于x的一元二次方程化成標(biāo)準(zhǔn)形式,然后利用Δ>0,即得m的取值范圍.【詳解】因?yàn)榉匠淌顷P(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點(diǎn)睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.5、A【解析】

由題意根據(jù)勾股定理求出OA,進(jìn)而根據(jù)正弦的定義進(jìn)行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點(diǎn)睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.6、C【解析】

如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2最大值=5+3=8,由此不難解決問(wèn)題.【詳解】解:如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2經(jīng)過(guò)圓心,經(jīng)過(guò)圓心的弦最長(zhǎng),P2Q2最大值=5+3=8,∴PQ長(zhǎng)的最大值與最小值的和是1.故選:C.【點(diǎn)睛】本題考查切線的性質(zhì)、三角形中位線定理等知識(shí),解題的關(guān)鍵是正確找到點(diǎn)PQ取得最大值、最小值時(shí)的位置,屬于中考??碱}型.7、D【解析】

首先過(guò)點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過(guò)點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.8、D【解析】

連接正六邊形的中心和各頂點(diǎn),得到六個(gè)全等的正三角形,于是可知正六邊形的邊長(zhǎng)等于正三角形的邊長(zhǎng),為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長(zhǎng),即其外接圓半徑為1.故選D.【點(diǎn)睛】本題考查了正六邊形的外接圓的知識(shí),解題的關(guān)鍵是畫(huà)出圖形,找出線段之間的關(guān)系.9、C【解析】

根據(jù)比較實(shí)數(shù)大小的方法進(jìn)行比較即可.根據(jù)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小即可求解.【詳解】因?yàn)檎龜?shù)大于負(fù)數(shù),兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的大小的比較,正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)絕對(duì)值大的反而?。?0、D【解析】

①根據(jù)作圖過(guò)程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來(lái)求∠ADC的度數(shù);③利用等角對(duì)等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點(diǎn)D在AB的中垂線上;④利用10°角所對(duì)的直角邊是斜邊的一半,三角形的面積計(jì)算公式來(lái)求兩個(gè)三角形面積之比.【詳解】①根據(jù)作圖過(guò)程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點(diǎn)D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點(diǎn)睛】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、④【解析】

根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項(xiàng)進(jìn)行判斷即可得出答案.【詳解】①[0)=1,故本項(xiàng)錯(cuò)誤;②[x)?x>0,但是取不到0,故本項(xiàng)錯(cuò)誤;③[x)?x?1,即最大值為1,故本項(xiàng)錯(cuò)誤;④存在實(shí)數(shù)x,使[x)?x=0.5成立,例如x=0.5時(shí),故本項(xiàng)正確.故答案是:④.【點(diǎn)睛】此題考查運(yùn)算的定義,解題關(guān)鍵在于理解題意的運(yùn)算法則.12、2【解析】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進(jìn)一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關(guān)系,得第三邊>4,而<1.又第三條邊長(zhǎng)為整數(shù),則第三邊是2.點(diǎn)睛:此題主要是考查了三角形的三邊關(guān)系,同時(shí)注意整數(shù)這一條件.13、【解析】

延長(zhǎng)AD和BC交于點(diǎn)E,在直角△ABE中利用三角函數(shù)求得BE的長(zhǎng),則EC的長(zhǎng)即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長(zhǎng)AD、BC相交于點(diǎn)E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.14、x≥﹣2且x≠1【解析】分析:根據(jù)使分式和二次根式有意義的要求列出關(guān)于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點(diǎn)睛:本題解題的關(guān)鍵是需注意:要使函數(shù)有意義,的取值需同時(shí)滿足兩個(gè)條件:和,二者缺一不可.15、50度【解析】

由將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點(diǎn)睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.16、1.【解析】

連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計(jì)算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點(diǎn)睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理.三、解答題(共8題,共72分)17、(1)當(dāng),時(shí)有最大值1;(2)當(dāng)時(shí),面積有最大值32.【解析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,由此即可解決問(wèn)題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題.【詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時(shí)有最大值1;(2)當(dāng),時(shí)有最大值,設(shè),由題意:當(dāng)AD∥BC,BD⊥AD時(shí),四邊形ABCD的面積最大,∴拋物線開(kāi)口向下∴當(dāng)時(shí),面積有最大值32.【點(diǎn)睛】本題考查三角形的面積,二次函數(shù)的應(yīng)用等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建二次函數(shù)解決問(wèn)題.18、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】

(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過(guò)點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過(guò)點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)C(,0).設(shè)點(diǎn)P的坐標(biāo)為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、一次(反比例)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.19、15cm【解析】試題分析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數(shù)得出方程,解方程即可.試題解析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作AD⊥OB于D,如圖所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四邊形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20、(Ⅰ)68°(Ⅱ)56°【解析】

(1)圓內(nèi)接四邊形的一個(gè)外角等于它的內(nèi)對(duì)角,利用圓內(nèi)接四邊形的性質(zhì)證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據(jù)同圓中,相等的弦所對(duì)弧相等,再根據(jù)同圓中,相等的弧所對(duì)圓周角相等,求出∠EAC,最后根據(jù)直徑所對(duì)圓周是直角,利用直角三角形兩銳角互余即可解決問(wèn)題.【詳解】(Ⅰ)∵四邊形ABED圓內(nèi)接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°【點(diǎn)睛】本題主要考查圓周角定理、直徑的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)等知識(shí),解決本題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.21、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過(guò)A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過(guò)A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過(guò)A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.22、(1)證明見(jiàn)解析;(2)△APQ是等邊三角形.【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論