2022-2023學(xué)年湖南省新化縣中考押題數(shù)學(xué)預(yù)測卷含解析_第1頁
2022-2023學(xué)年湖南省新化縣中考押題數(shù)學(xué)預(yù)測卷含解析_第2頁
2022-2023學(xué)年湖南省新化縣中考押題數(shù)學(xué)預(yù)測卷含解析_第3頁
2022-2023學(xué)年湖南省新化縣中考押題數(shù)學(xué)預(yù)測卷含解析_第4頁
2022-2023學(xué)年湖南省新化縣中考押題數(shù)學(xué)預(yù)測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下表是某校合唱團(tuán)成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差2.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.13.下列式子中,與互為有理化因式的是()A. B. C. D.4.下列實數(shù)中是無理數(shù)的是()A. B.π C. D.5.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)題意,得A.25x-C.30(1+80%)x-6.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8337.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.38.地球上的陸地面積約為149000000千米2,用科學(xué)記數(shù)法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千29.點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關(guān)于x軸對稱 B.關(guān)于y軸對稱C.繞原點逆時針旋轉(zhuǎn) D.繞原點順時針旋轉(zhuǎn)10.如圖,以∠AOB的頂點O為圓心,適當(dāng)長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關(guān)于OE所在直線對稱D.O、E兩點關(guān)于CD所在直線對稱11.下列幾何體是棱錐的是()A. B. C. D.12.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某市對九年級學(xué)生進(jìn)行“綜合素質(zhì)”評價,評價結(jié)果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學(xué)生的評價結(jié)果作為樣本進(jìn)行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為_____人.14.分解因式:_______15.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當(dāng)正方形CDEF的邊長為4時,陰影部分的面積為_____.16.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.17.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.18.計算:7+(-5)=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.20.(6分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.21.(6分)平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.(1)設(shè)a=2,點B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達(dá)式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點B,點B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.22.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結(jié)論.(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數(shù)為6的一個一元二次方程.23.(8分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.24.(10分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).25.(10分)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.(1)求證:∠DCA=∠EBC;(2)延長BE交AD于F,求證:AB2=AF·AD.26.(12分)某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:(1)九(1)班的學(xué)生人數(shù)為,并把條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.27.(12分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請你按以上規(guī)律寫出第4個算式;(2)把這個規(guī)律用含字母的式子表示出來;(3)你認(rèn)為(2)中所寫出的式子一定成立嗎?并說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關(guān)鍵.2、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標(biāo)是(x,34則DN=34y=34當(dāng)x=0時,y=3,當(dāng)y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學(xué)生運用這些性質(zhì)進(jìn)行計算的能力,題目比較典型,綜合性比較強.3、B【解析】

直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點睛】本題考查了有理化因式,如果兩個含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說這兩個非零代數(shù)式互為有理化因式.單項二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來進(jìn)行分步確定.4、B【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、是分?jǐn)?shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分?jǐn)?shù),屬于有理數(shù);故選B.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).5、A【解析】若設(shè)走路線一時的平均速度為x千米/小時,根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時的平均速度為x千米/小時,25故選A.6、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.7、D【解析】

由根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結(jié)論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積是關(guān)鍵.8、C【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).解:149

000

000=1.49×2千米1.故選C.把一個數(shù)寫成a×10n的形式,叫做科學(xué)記數(shù)法,其中1≤|a|<10,n為整數(shù).因此不能寫成149×106而應(yīng)寫成1.49×2.9、C【解析】分析:根據(jù)旋轉(zhuǎn)的定義得到即可.詳解:因為點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉(zhuǎn)90°得到點B,故選C.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩個圖形全等,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.10、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關(guān)于OE所在直線對稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關(guān)于CD所在直線不對稱,錯誤,符合題意.故選D.11、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關(guān)鍵是根據(jù)棱錐的概念判斷.12、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當(dāng)m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當(dāng)m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、16000【解析】

用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學(xué)生所占的比即可求得結(jié)果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應(yīng)用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).14、【解析】=2()=.故答案為.15、4π﹣1【解析】分析:連結(jié)OC,根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,

∴∠COD=45°,

∴OC=CD=4,

∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積

==4π-1.故答案是:4π-1.點睛:考查了正方形的性質(zhì)和扇形面積的計算,解題的關(guān)鍵是得到扇形半徑的長度.16、【解析】

設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當(dāng)時,取得最大值,

故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.17、50°【解析】

先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點睛】考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運用三角形外角的性質(zhì)(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和).18、2【解析】

根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(x﹣y)2;2.【解析】

首先利用多項式的乘法法則以及多項式與單項式的除法法則計算,然后合并同類項即可化簡,然后代入數(shù)值計算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當(dāng)x=2028,y=2時,原式=(2028﹣2)2=(﹣2)2=2.【點睛】本題考查的是整式的混合運算,正確利用多項式的乘法法則以及合并同類項法則是解題的關(guān)鍵.20、(1)證明見解析;(2)CD=2.【解析】

(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點睛】本題考查了直角三角形中的有關(guān)問題,主要考查了勾股定理,三角函數(shù)的有關(guān)計算.熟練掌握三角函數(shù)的概念是解題關(guān)鍵.21、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點坐標(biāo)即可;(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;(3)設(shè)出點A、A′坐標(biāo),依次表示AD、AF及點P坐標(biāo).詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標(biāo)為(2,4),A′坐標(biāo)為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當(dāng)y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標(biāo)都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當(dāng)x=a時,點D縱坐標(biāo)為,∴AD=∵AD=AF,∴點F和點P橫坐標(biāo)為,∴點P縱坐標(biāo)為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質(zhì),解答過程中,涉及到了面積轉(zhuǎn)化方法、待定系數(shù)法和數(shù)形結(jié)合思想.22、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達(dá)定理即可求解.解:(1)結(jié)論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設(shè)⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達(dá)定理可知:分別以、為兩根且二次項系數(shù)為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關(guān)于圓的綜合題.正確分析圖形并應(yīng)用圖形的性質(zhì)是解題的關(guān)鍵.23、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質(zhì)可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點:圓周角定理;全等三角形的判定及性質(zhì);切線的判定定理24、CE的長為(4+)米【解析】

由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.【詳解】過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論