電磁場與電磁波第6講基本假設(shè)庫侖定律高斯定理電位-wb_第1頁
電磁場與電磁波第6講基本假設(shè)庫侖定律高斯定理電位-wb_第2頁
電磁場與電磁波第6講基本假設(shè)庫侖定律高斯定理電位-wb_第3頁
電磁場與電磁波第6講基本假設(shè)庫侖定律高斯定理電位-wb_第4頁
電磁場與電磁波第6講基本假設(shè)庫侖定律高斯定理電位-wb_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

FieldandWaveElectromagnetics電磁場與電磁波2012.3.611.ProductsofVectors2.OrthogonalCoordinateSystemsReviewCartesianCoordinatesPositionvector:ArbitraryVectorA:2Dotproduct:Crossproduct:Differentiallength:Differentialvolume:Differentialsurface:33.GradientofaScalarField4.DivergenceofaVectorField5.DivergenceTheorem46.CurlofaVectorField7.Stokes’sTheorem8.TwoNullIdentitiesifthenifthen59.Helmholtz’sTheoremHelmholtz’sTheorem:Avectorfield(vectorpointfunction)isdeterminedtowithinanadditiveconstantifbothitsdivergenceanditscurlarespecifiedeverywhere.6MaintopicStaticElectricFields1.FundamentalPostulatesofElectrostaticsinFreeSpace2.Coulomb’sLaw3.Gauss’sLawandApplications4.

ElectricPotential

71.FundamentalPostulatesofElectrostaticsinFreeSpace1.1.ElectricfieldintensityElectircfieldintensityisdefinedastheforce

perunitchargethataverysmallstationarytestchargeexperienceswhenitisplacedinaregionwhereanelectricfieldexists.Thatis,TheelectricfieldintensityEis,thenproportionaltoandinthedirectionoftheforceF.IfFismeasuredinnewtons(N)andchargeqincoulombs(C),thenEisinnewtonspercoulomb(N/C),

whichisthesameasvoltspermeter(V/m).AninverserelationofaboveEq.givestheforceFonastationarychargeqinanelectricfieldE:81.2.FundamentalPostulatesThetwofundamentalpostulatesofelectrostaticsinfreespacespecifythedivergenceandcurlofE.Theyare

isthevolumechargedensityoffreecharges(C/m3),and0

isthepermittivityoffreespace,auniversalconstant.Equationassertsthatstaticelectricfieldsareirrotational(conservative)andimpliesthatastaticelectricfieldisnotsolenoidalunless=0.Differentialform9DivergenceTheoremWhereQisthetotalchargecontainedinvolumeVboundedbysurfaceS.EquationisaformofGauss’slaw,whichstatesthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.

Stokes’sTheoremwhichassertsthatthescalarlineintegralofthestaticelectricfieldintensityaroundanyclosedpathvanishes.Thescalarproductintegratedoveranypathisthevoltagealongthatpath.ThisEq.isanexpressionofKirchhoff’svoltagelawincircuittheorythatthealgebraicsumofvoltagedropsaroundanyclosedcircuitiszero.101.2.FundamentalPostulatesDifferentialformIntegralformPostulatesofelectrostaticsinfreespace112.Coulomb’sLaw2.1.Electricfieldduetoapointcharge12Example3-1p78場點(diǎn)P

(x,y,z)y源點(diǎn)Q(x’,y’,z’)zxO132.2Coulomb’sLawWhenapointchargeq2isplacedinthefieldofanotherpointcharge

q1attheorigin,aforceF12isexperiencedbyq2duetoelectricfieldintensityE12ofq1atq2.wehave2.3ElectricfieldduetoasystemofdiscretechargesSinceelectricfieldintensityisalinearfunctionof(proportionalto)aRq/R2,theprincipleofsuperpositionapplies,andthetotalEfieldatapointisthevectorsumofthefieldscausedbyalltheindividualcharges.WecanwritetheelectricintensityatafieldpointwhosepositionvectorisRas14Letusconsiderthesimplecaseofanelectricdipolethatconsistsofapairofequalandoppositecharges+qand–q,separatedbyasmalldistance,d,asshowninFig.Electricdipolemoment,p:15電偶極子的電場線和等位線16PV’2.4ElectricfieldduetoacontinuousdistributionofchargesTheelectricfieldcausedbyacontinuousdistributionofchargecanbeobtainedbyintegrating(superposing)thecontributionofan

elementofchargeoverthechargedistribution.dv’R(V/m)17Example3-4p85-87183.Gauss’sLawandApplicationsGauss’slawassertsthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.Gauss’slawisparticularlyusefulindeterminingtheE-fieldofchargedistributionswithsomesymmetryconditions,suchthatthenormalcomponentoftheelectricfieldintensityisconstantoveranenclosedsurface.TheessenceofapplyingGauss’slawliesfirstintherecognitionofsymmetryconditionsandsecondinthesuitablechoiceofasurfaceoverwhichthenormalcomponentofEresultingfromagivenchargedistributionisaconstant.SuchasurfaceisreferredtoasaGaussiansurface.1920Example3-5p8821xzyr21rO例4求長度為L,線密度為的均勻線分布電荷的電場強(qiáng)度。

令圓柱坐標(biāo)系的z軸與線電荷的長度方位一致,且中點(diǎn)為坐標(biāo)原點(diǎn)。由于結(jié)構(gòu)旋轉(zhuǎn)對稱,場強(qiáng)與方位角

無關(guān)。因為電場強(qiáng)度的方向無法判斷,不能應(yīng)用高斯定律,必須直接求積。22

因場量與無關(guān),為了方便起見,可令觀察點(diǎn)P

位于yz平面,即,那么xzyr21rO考慮到23求得當(dāng)長度L

時,1

0,2,則24Example3-6p8925Example3-7p9026274.ElectricPotentialWewanttomaketwomorepointsaboutEq.First,theinclusionofthenegativesignisnecessaryinordertoconformwiththeconventionthatingoingagainsttheEfieldtheelectricpotential

Vincreases.Second,whenwedefinedthegradientofascalarfield,thatthedirectionofVisnormaltothesurfacesofconstantV.hencethefieldlinesorstreamlinesareeverywhere

perpendiculartoequipotentiallinesandequipotentialsurfaces.28Electricpotentialdoeshavephysicalsignificance,anditisrelatedtotheworkdoneincarryingachargefromonepointtoanother.Aswedefinedtheelectricfieldintensityastheforceactingonaunittestcharge.Therefore,inmovingaunitchargefrompointP1

topointP2

inanelectricfield,workmustbedoneagainstthefield

andisequaltoAnalogoustotheconceptofpotentialenergyinmechanics,AboveequationrepresentsthedifferenceinelectricpotentialenergyofaunitchargebetweenpointP2andpointP1.

DenotingtheelectricpotentialenergyperunitchargebyV.theelectricpotential,wehave29Wehavedefinedapotentialdifference(electrostaticvoltage)betweenpointsP2andP1.Itmakesnomoresensetotalkabouttheabsolutepotentialofapointthanabouttheabsolutephaseofphasorortheabsolutealtitudeofageographicallocation;areferencezero-potentialpoint,areferencezero(usuallyatt=0),orareferencezeroaltitude(usuallyatsealevel)mustfirstbespecified.Inmost(butnotall)casesthezero-potentialpointistakenatinfinity.Whenthereferencezero-potentialpointisnotatinfinity,itshouldbespecificallystated.30ElectricPotentialduetoaChargeDistributionForasystemofndiscretepointchargesq1,q2,…,qnTheelectricpotentialdueto

onepointcharge31ForavolumechargedistributionForasurfacechargedistribution

Foralinechargedistribution

Asanexample,letusagainconsideranelectricdipoleconsistingofcharges+qand–qwithasmallseparationd.Calculatetheelectricfieldintensityproducedbytheelectricdipole.32TheelectricpotentialatPproducedbyanelectricdipolecanbewrittendowndirectly:Solution:33Makeatwo-dimensionalsketchoftheequipotentiallinesandtheelectricfieldlinesforanelectricdipole.34Example3-9P98-9935TheprecedingexampleillustratestheprocedurefordeterminingEbyfirstfindingVwhenGauss’slawcannotbeconvenientlyapplied.However,weemphasizethatifsymmetryconditionsexistsuchthataGaussiansurfacecanbeconstructedoverwhichE·dsisconstant,itisalwayseasiertodetermineEdirectly.ThepotentialV,if

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論