版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標系xOy中,△ABC頂點的橫、縱坐標都是整數(shù).若將△ABC以某點為旋轉中心,順時針旋轉90°,得到△A1B1C1,則旋轉中心的坐標是()A.(0,0) B.(1,0) C.(1,﹣1) D.(1,﹣2)2.如圖,已知圓錐側面展開圖的扇形面積為65cm2,扇形的弧長為10cm,則圓錐母線長是()A.5cm B.10cm C.12cm D.13cm3.某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長率為()A.10% B.20% C.25% D.40%4.如圖,,相交于點,.若,,則與的面積之比為()A. B. C. D.5.下表是二次函數(shù)y=ax2+bx+c的部分x,y的對應值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推斷m的值為()A.﹣2 B.0 C. D.26.若點、、都在反比例函數(shù)的圖象上,并且,則下列各式中正確的是()A. B. C. D.7.如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F,若BC=4,∠CBD=30°,則AE的長為()A. B. C. D.8.下列函數(shù)中是反比例函數(shù)的是()A. B. C. D.9.如圖,菱形ABCD中,∠A=60°,邊AB=8,E為邊DA的中點,P為邊CD上的一點,連接PE、PB,當PE=EB時,線段PE的長為()A.4 B.8 C.4 D.410.﹣3的絕對值是()A.﹣3 B.3 C.- D.11.如圖,該幾何體的主視圖是()A. B. C. D.12.下列說法中錯誤的是()A.籃球隊員在罰球線上投籃一次,未投中是隨機事件B.“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件C.“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上D.“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近二、填空題(每題4分,共24分)13.Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,則PQ長的最小值是_____.14.將一些相同的圓點按如圖所示的規(guī)律擺放:第1個圖形有3個圓點,第2個形有7個圓點,第3個圖形有13個圓點,第4個圖形有21個圓點,則第20個圖形有_____個圓點.15.如圖,分別以等邊三角形的每個頂點為圓心,邊長為半徑,在另兩個頂點之間作一段弧,三段弧圍成的曲邊三角形稱為“勒洛三角形”,若等邊三角形的邊長為2,則“勒洛三角形”的面積為_________.16.大潤發(fā)超市對去年全年每月銷售總量進行統(tǒng)計,為了更清楚地看出銷售總量的變化趨勢,應選用________統(tǒng)計圖來描述數(shù)據(jù).17.像=x這樣的方程,可以通過方程兩邊平方把它轉化為2x+2=x2,解得x1=2,x2=﹣1.但由于兩邊平方,可能產(chǎn)生增根,所以需要檢驗,經(jīng)檢驗,當x1=2時,=2滿足題意;當x2=﹣1時,=﹣1不符合題意;所以原方程的解是x=2.運用以上經(jīng)驗,則方程x+=1的解為_____.18.如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=6,則△AEC的面積為_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,點A在第二象限內(nèi),點B在x軸上,∠BAO=30°,AB=BO,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(1)求∠AOB的度數(shù)(2)若OA=,求點A的坐標(3)若S△ABO=,求反比例函數(shù)的解析式20.(8分)為了提高教學質量,促進學生全面發(fā)展,某中學計劃投入99000元購進一批多媒體設備和電腦顯示屏,且準備購進電腦顯示屏的數(shù)量是多媒體設備數(shù)量的6倍.現(xiàn)從商家了解到,一套多媒體設備和一個電腦顯示屏的售價分別為3000元和600元.(1)求最多能購進多媒體設備多少套?(2)恰逢“雙十一”活動,每套多媒體設備的售價下降,每個電腦顯示屏的售價下降元,學校決定多媒體設備和電腦顯示屏的數(shù)量在(1)中購進最多量的基礎上都增加,實際投入資金與計劃投入資金相同,求的值.21.(8分)邊長為2的正方形在平面直角坐標系中的位置如圖所示,點是邊的中點,連接,點在第一象限,且,.以直線為對稱軸的拋物線過,兩點.(1)求拋物線的解析式;(2)點從點出發(fā),沿射線每秒1個單位長度的速度運動,運動時間為秒.過點作于點,當為何值時,以點,,為頂點的三角形與相似?(3)點為直線上一動點,點為拋物線上一動點,是否存在點,,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.22.(10分)如圖,已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,-3).(1)求拋物線的解析式;(2)若點P(4,m)在拋物線上,求△PAB的面積.23.(10分)在一個不透明的袋子中裝有3個乒乓球,分別標有數(shù)字1,2,3,這些乒乓球除所標數(shù)字不同外其余均相同.先從袋子中隨機摸出1個乒乓球,記下標號后放回,再從袋子中隨機摸出1個乒乓球記下標號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標號之和是偶數(shù)的概率.24.(10分)如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖像交于A,B兩點.點C在x軸負半軸上,的面積為12.(1)求k的值;(2)根據(jù)圖像,當時,寫出x的取值范圍;(3)連接BC,求的面積.25.(12分)如圖,一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標與B點的縱坐標都是3.(1)求一次函數(shù)的表達式;(2)求△AOB的面積;(3)寫出不等式kx+b>﹣的解集.26.如圖,雙曲線經(jīng)過點,且與直線有兩個不同的交點.(1)求的值;(2)求的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、C【解析】先根據(jù)旋轉的性質得到點A的對應點為點,點B的對應點為點,點C的對應點為點,再根據(jù)旋轉的性質得到旋轉中心在線段的垂直平分線上,也在線段的垂直平分線上,即兩垂直平分線的交點為旋轉中心,而易得線段的垂直平分線為直線x=1,線段的垂直平分線為以為對角線的正方形的另一條對角線所在的直線上.【詳解】∵將△ABC以某點為旋轉中心,順時針旋轉90°得到△,
∴點A的對應點為點,點B的對應點為點,點C的對應點為點
作線段和的垂直平分線,它們的交點為P(1,-1),
∴旋轉中心的坐標為(1,-1).
故選C.【點睛】本題考查了坐標與圖形變化-旋轉:圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.2、D【解析】∴選D3、B【分析】2019年水果產(chǎn)量=2017年水果產(chǎn)量,列出方程即可.【詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.【點睛】本題考查了一元二次方程的應用.4、B【分析】先證明兩三角形相似,再利用面積比是相似比的平方即可解出.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比為:1:2.∴△AOB和△DCO面積比為:1:4.故選B.【點睛】本題考查相似三角形的面積比,關鍵在于牢記面積比和相似比的關系.5、C【分析】首先根據(jù)表中的x、y的值確定拋物線的對稱軸,然后根據(jù)對稱性確定m的值即可.【詳解】解:觀察表格發(fā)現(xiàn)該二次函數(shù)的圖象經(jīng)過點(,﹣)和(,﹣),所以對稱軸為x==1,∵,∴點(﹣,m)和(,)關于對稱軸對稱,∴m=,故選:C.【點睛】本題考查了二次函數(shù)的圖象與性質,解題的關鍵是通過表格信息確定拋物線的對稱軸.6、B【分析】根據(jù)反比例函數(shù)的圖象特征即可得.【詳解】反比例函數(shù)的圖象特征:(1)當時,y的取值為正值;當時,y的取值為負值;(2)在每個象限內(nèi),y隨x的增大而增大由特征(1)得:,則最大由特征(2)得:綜上,故選:B.【點睛】本題考查了反比例函數(shù)的圖象特征,掌握理解反比例函數(shù)的圖象特征是解題關鍵.7、D【分析】如圖,作EH⊥AB于H,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.【詳解】如圖,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵點E為BC中點,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故選:D.【點睛】本題考查解直角三角形的應用,正確作出輔助線構建直角三角形并熟記三角函數(shù)的定義是解題關鍵.8、B【分析】由題意直接根據(jù)反比例函數(shù)的定義對下列選項進行判定即可.【詳解】解:根據(jù)反比例函數(shù)的定義可知是反比例函數(shù),,是一次函數(shù),,是二次函數(shù),都要排除.故選:B.【點睛】本題考查反比例函數(shù)的定義,注意掌握反比例函數(shù)解析式的一般形式,也可以轉化為的形式.9、D【分析】由菱形的性質可得AB=AD=8,且∠A=60°,可證△ABD是等邊三角形,根據(jù)等邊三角形中三線合一,求得BE⊥AD,再利用勾股定理求得EB的長,根據(jù)PE=EB,即可求解.【詳解】解:如上圖,連接BD∵四邊形ABCD是菱形,
∴AB=AD=8,且∠A=60°,
∴△ABD是等邊三角形,∵點E是DA的中點,AD=8
∴BE⊥AD,且∠A=60°,AE=
∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,
故選:D.【點睛】本題考查了菱形的性質,等邊三角形判定和性質,直角三角形的性質,靈活運用這些性質進行推理是本題的關鍵.10、B【分析】根據(jù)負數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù).11、D【解析】試題分析:根據(jù)主視圖是從正面看到的圖形,因此可知從正面看到一個長方形,但是還得包含看不到的一天線(虛線表示),因此第四個答案正確.故選D考點:三視圖12、C【分析】根據(jù)隨機事件的定義可判斷A項,根據(jù)中心對稱圖形和必然事件的定義可判斷B項,根據(jù)概率的定義可判斷C項,根據(jù)頻率與概率的關系可判斷D項,進而可得答案.【詳解】解:A、籃球隊員在罰球線上投籃一次,未投中是隨機事件,故本選項說法正確,不符合題意;B、“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件,故本選項說法正確,不符合題意;C、“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上,故本選項說法錯誤,符合題意;D、“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近,故本選項說法正確,不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、中心對稱圖形以及頻率與概率的關系等知識,熟練掌握上述知識是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】根據(jù)點與圓的位置關系即可得到結論.【詳解】解:∵Q是半徑為3的⊙O上一點,點P與圓心O的距離OP=5,根據(jù)三角形的三邊關系,PQ≥OP-OQ(注:當O、P、Q共線時,取等號)∴PQ長的最小值=5-3=1,故答案為:1.【點睛】此題考查的是點與圓的位置關系,掌握三角形的三邊關系求最值是解決此題的關鍵.14、1【分析】觀察圖形可知,每個圖形中圓點的個數(shù)為序號數(shù)的平方加上序號數(shù)+1,依此可求第n個圖有多少個圓點.【詳解】解:由圖形可知,第1個圖形有12+1+1=3個圓點;第2個圖形有22+2+1=7個圓點;第3個圖形有32+3+1=13個圓點;第4個圖形有42+4+1=21個圓點;…則第n個圖有(n2+n+1)個圓點;所以第20個圖形有202+20+1=1個圓點.故答案為:1.【點睛】此題考查圖形的變化規(guī)律,找出圖形之間的聯(lián)系,找出規(guī)律是解決問題的關鍵.15、【分析】圖中勒洛三角形是由三塊相同的扇形疊加而成,其面積三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】解:過作于,∵是等邊三角形,,,,,,的面積為,,勒洛三角形的面積,故答案為:.【點睛】本題考查了等邊三角形的性質和扇形的面積計算,能根據(jù)圖形得出勒洛三角形的面積三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.16、折線【解析】試題解析:根據(jù)題意,得要求清楚地表示銷售總量的總趨勢是上升還是下降,結合統(tǒng)計圖各自的特點,應選用折線統(tǒng)計圖,17、x=﹣1【分析】根據(jù)等式的性質將x移到等號右邊,再平方,可得一元二次方程,根據(jù)解一元二次方程,可得答案.【詳解】解:將x移到等號右邊得到:=1﹣x,兩邊平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,檢驗:x=4時,4+=5,左邊≠右邊,∴x=4不是原方程的解,當x=﹣1時,﹣1+2=1,左邊=右邊,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案為:x=﹣1.【點睛】本題主要考查解無理方程的知識點,去掉根號把無理式化成有理方程是解題的關鍵,注意觀察方程的結構特點,把無理方程轉化成一元二次方程的形式進行解答,需要同學們仔細掌握.18、4【分析】根據(jù)旋轉后AC的中點恰好與D點重合,利用旋轉的性質得到直角三角形ACD中,∠ACD=30°,再由旋轉后矩形與已知矩形全等及矩形的性質得到∠DAE為30°,進而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設AE=CE=x,表示出AD與DE,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.【詳解】解:∵旋轉后AC的中點恰好與D點重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,設AE=EC=x,則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根據(jù)勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,則S△AEC=EC?AD=4.故答案為4.【點睛】本題考查了旋轉的性質,含30度直角三角形的性質,勾股定理以及等腰三角形的性質的運用,熟練掌握性質及定理是解答本題的關鍵.三、解答題(共78分)19、(1)30°;(2)A(﹣6,);(3)【分析】(1)由題意直接根據(jù)等腰三角形的性質進行分析即可;(2)由題意過點A作AC⊥x軸于點C,由∠AOB=30°,解直角三角形可得出AC=2,再由銳角三角函數(shù)或勾股定理得出OC=6,即可求得A點的坐標;(3)根據(jù)題意設OB=AB=m,根據(jù)BA=BO可得出∠ABC=60°,由此可得出AC=m,由S△ABO=,列出關于m的方程,解方程求得m的值,進而AC和OC,結合反比例函數(shù)系數(shù)k的幾何意義求得解析式.【詳解】解(1)∵AB=BO,∠BAO=30°,∴∠AOB=∠BAO=30°.(2)過點A作AC⊥x軸,∵∴,∴A(﹣6,).(3)設OB=AB=,得出∠ABC=60°,在直角三角形ACB中得出AC=,∵S△ABO=,∴,∴,∴AC==,∴A(﹣3,).把A點坐標代入得反比例函數(shù)的解析式為.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義、特殊角的三角函數(shù)值,解題的關鍵是根據(jù)特殊角的三角函數(shù)值找出線段的長度.20、(1)15套;(2)37.5【分析】(1)設購買A種設備x套,則購買B種設備6x套,根據(jù)總價=單價×數(shù)量結合計劃投入99000元,即可得出關于x的一元一次不等式,解之取其最大值即可得出結論;(2)根據(jù)總價=單價×數(shù)量結合實際投入資金與計劃投入資金相同,即可得出關于a的一元二次方程,解之取其正值即可得出結論.【詳解】(1)設能購買多媒體設備套,則購買顯示屏6x套,根據(jù)題意得:解得:答:最多能購買多媒體設備15套.(2)由題意得:設,則原方程為:整理得:解得:,(不合題意舍去)∴.答:的值是37.5.【點睛】本題考查了一元一次不等式的應用以及一元二次方程的應用,解題的關鍵是:(1)根據(jù)各數(shù)量之間的關系,找出關于x的一元一次不等式;(2)找準等量關系,正確列出一元二次方程.21、(1);(2)或時,以點,,為頂點的三角形與相似;(3)存在,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,【分析】(1)根據(jù)正方形的性質,可得OA=OC,∠AOC=∠DGE,根據(jù)余角的性質,可得∠OCD=∠GDE,根據(jù)全等三角形的判定與性質,可得EG=OD=1,DG=OC=2,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分類討論:若△DFP∽△COD,根據(jù)相似三角形的性質,可得∠PDF=∠DCO,根據(jù)平行線的判定與性質,可得∠PDO=∠OCP=∠AOC=90,根據(jù)矩形的判定與性質,可得PC的長;若△PFD∽△COD,根據(jù)相似三角形的性質,可得∠DPF=∠DCO,,根據(jù)等腰三角形的判定與性質,可得DF于CD的關系,根據(jù)相似三角形的相似比,可得PC的長;(3)分類討論:當四邊形是平行四邊形時,四邊形是平行四邊形時,四邊形是平行四邊形時,根據(jù)一組對邊平行且相等的四邊形式平行四邊,可得答案.【詳解】解:(1)過點作軸于點.∵四邊形是邊長為2的正方形,是的中點,∴,,.∵,∴.∵,∴.在和中,∴,,.∴點的坐標為.∵拋物線的對稱軸為直線即直線,∴可設拋物線的解析式為,將、點的坐標代入解析式,得,解得.∴拋物線的解析式為;(2)①若,則,,∴,∴四邊形是矩形,∴,∴;②若,則,∴.∴.∴,∴.∵,∴,∴.∵,∴,,綜上所述:或時,以點,,為頂點的三角形與相似:(3)存在,①若以DE為平行四邊形的對角線,如圖2,此時,N點就是拋物線的頂點(2,),由N、E兩點坐標可求得直線NE的解析式為:y=x;∵DM∥EN,∴設DM的解析式為:y=x+b,將D(1,0)代入可求得b=?,∴DM的解析式為:y=x?,令x=2,則y=,∴M(2,);②過點C作CM∥DE交拋物線對稱軸于點M,連接ME,如圖3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四邊形,即N點與C占重合,∴N(0,2),M(2,3);③N點在拋物線對稱軸右側,MN∥DE,如圖4,作NG⊥BA于點G,延長DM交BN于點H,∵MNED是平行四邊形,∴∠MDE=MNE,∠ENH=∠DHB,∵BN∥DF,∴∠ADH=∠DHB=∠ENH,∴∠MNB=∠EDF,在△BMN和△FED中∴△BMN≌△FED(AAS),∴BM=EF=1,BN=DF=2,∴M(2,1),N(4,2);綜上所述,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,.【點睛】本題考查了二次函數(shù)綜合題,(1)利用了正方形的性質,余角的性質,全等三角形的判定與性質,待定系數(shù)法求函數(shù)解析式;(2)利用了相似三角形的性質,矩形的判定,分類討論時解題關鍵;(3)利用了平行四邊形的判定,分類討論時解題關鍵.22、(1)y=;(2)3【分析】(1)利用交點式得出y=a(x-1)(x-3),進而得出a的值即可.(2)把代入,求出P點的縱坐標,再利用三角形的面積公式求解即可.【詳解】解:(1)∵拋物線與軸交于點,∴設拋物線解析式為∵過點∴∴拋物線解析式為.(2)∵點在拋物線上∴∴.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式及利用三角形的面積公式求解,解題的關鍵是:巧設交點式,利用待定系數(shù)法求出二次函數(shù)表達式.23、圖形見解析,概率為【分析】根據(jù)題意列出樹形圖,再利用概率公式計算即可.【詳解】根據(jù)題意,列表如下:共有9種結果,并且它們出現(xiàn)的可能性相等,符合題意的結果有5種,.【點睛】本題考查概率的計算,關鍵在于熟悉樹形圖和概率公式.24、(1);(2)或;(3)24【分析】(1)過點A作AD垂直于OC,由AC=AO,得到CD=DO,確定出三角形ADO與三角形A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件公司總經(jīng)理聘任合同
- 河道整治自卸車租賃協(xié)議
- 政府機構租賃合同-政府
- 垃圾處理保溫系統(tǒng)安裝協(xié)議
- 高空水電站設備維護合同
- 資產(chǎn)轉讓協(xié)議三篇
- 芹菜收購合同范本(2篇)
- 公交車廣告違約終止合同通知書
- 集體合同培訓材料
- 煙酒貨物運輸合同范例
- 《周長》單元備課(教學設計)-2024-2025學年三年級上冊數(shù)學北師大版
- 2024短劇出海白皮書
- 2024青海海東市水務集團限責任公司招聘27人(高頻重點提升專題訓練)共500題附帶答案詳解
- 幼兒園戶外混齡建構游戲案例分析
- 2024年印尼叔丁醇鉀市場競爭態(tài)勢與及未來趨勢預測報告
- 旅游公司聯(lián)營協(xié)議
- JGJ52-2006 普通混凝土用砂、石質量及檢驗方法標準
- JGJ31-2003 體育建筑設計規(guī)范
- 部編版四年級上冊道德與法治期末測試卷【全優(yōu)】
- 產(chǎn)品研發(fā)項目立項書模板
- 自然科學基礎綜合練習及答案
評論
0/150
提交評論