版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
積分變換
第一章Fourier變換
§
1.1Fourier積分
但全直線上的非周期函數(shù)沒有Fourier級(jí)數(shù)表示;
引進(jìn)類似于Fourier級(jí)數(shù)的Fourier積分(周期趨于無窮時(shí)的極限形式)復(fù)習(xí):
周期函數(shù)在一定條件下可以展開為Fourier級(jí)數(shù);最常用的一種周期函數(shù)是三角函數(shù)
fT(t)=Asin(wt+j),其中w=2p/T研究周期函數(shù)
fT(t),如果在區(qū)間[-T/2,T/2]上滿足狄利克雷(Dirichlet)條件:1.連續(xù)或只有有限個(gè)第一類間斷點(diǎn);2.只有有限個(gè)極值點(diǎn).那么在區(qū)間[-T/2,T/2]上就可以展成Fourier級(jí)數(shù).t由高數(shù)可知,任何滿足狄氏條件的周期函數(shù)fT(t),可表示為三角級(jí)數(shù)的形式如下:§1.2Fourier變換1.Fourier變換的概念我們知道,若函數(shù)f(t)滿足傅氏積分定理的條件,則在
f(t)的連續(xù)點(diǎn)處,有(1.8)式叫做f(t)的Fourier變換式,(1.9)式為F(w)的Fourier逆變換式,f(t)與F(w)可相互轉(zhuǎn)換,可記為
F(w)=?[f(t)]和
f(t)=?
-1[F(w)]還可以將f(t)放在左端,
F(w)放在右端,中間用雙向箭頭連接:
f(t) F(w)
(1.8)式右端的積分運(yùn)算,叫做f(t)的Fourier變換,同樣,(1.9)式右端的積分運(yùn)算,叫做F(w)的Fourier逆變換.
F(w)稱作f(t)的象函數(shù),
f(t)稱作F(w)的象原函數(shù).
可以說象函數(shù)F(w)和象原函數(shù)f(t)構(gòu)成了一個(gè)Fourier變換對(duì).傅氏積分定理
若f(t)在(-,+)上滿足條件:
1.f(t)在任一有限區(qū)間上滿足狄氏條件;
2.f(t)在無限區(qū)間(-,+)上絕對(duì)可積,則有
為連續(xù)點(diǎn)
為間斷點(diǎn)tf(t)根據(jù)(1.8)式,有這就是指數(shù)衰減函數(shù)的Fourier變換.=?
[]根據(jù)(1.9)式,有=?問題的提出Fourier變換的兩個(gè)限制:
對(duì)于任意一個(gè)函數(shù)使其進(jìn)行Fourier變換時(shí)克服上述兩個(gè)缺點(diǎn)?能否經(jīng)過適當(dāng)?shù)馗脑?/p>
因此,幾乎所有的實(shí)用函數(shù)j(t)乘上u(t)再乘上e-bt后得到的j(t)u(t)e-bt傅氏變換都存在.
首先將j(t)
乘上u(t),這樣t小于零的部分的函數(shù)值就都等于0了.
而大家知道在各種函數(shù)中,指數(shù)函數(shù)ebt
(b>0)的上升速度是很快的了,因而e-bt下降的速度也是很快的.tf(t)Otf(t)u(t)e-btO對(duì)函數(shù)j(t)u(t)e-bt(b>0)取傅氏變換,可得定義
設(shè)函數(shù)f(t)當(dāng)t0時(shí)有定義,而且積分在s的某一域內(nèi)收斂,則由此積分所確定的函數(shù)可寫為稱此式為函數(shù)f(t)的Laplace變換式(簡(jiǎn)稱拉氏變換式),記為
F(s)=?[f(t)]F(s)稱為f(t)的Laplace變換(或稱為象函數(shù)).而f(t)稱為F(s)的Laplace逆變換(或象原函數(shù))記為
f(t)=?
-1[F(s)]例1
求單位階躍函數(shù)解:根據(jù)拉氏變換的定義,有這個(gè)積分在Re(s)>0時(shí)收斂,而且有??所以例2
求指數(shù)函數(shù)f(t)=ekt的拉氏變換(k為實(shí)數(shù)).
根據(jù)(2.1)式,有其實(shí)k為復(fù)數(shù)時(shí)上式也成立,只是收斂區(qū)間為
Re(s)>Re(k).?例3
求
f(t)=sinkt
(k為實(shí)數(shù))的拉氏變換.解:?
在今后的實(shí)際工作中,我們并不要求用廣義
積分的方法來求函數(shù)的拉氏和Fourier變換,有現(xiàn)成的拉氏和傅氏變換表可查,就如同使用三角函數(shù)表,對(duì)數(shù)表及積分表一樣.本書已將工程實(shí)際中常遇到的一些函數(shù)及其傅氏、拉氏變換列于附錄中,以備查詢.
在物理學(xué)和工程技術(shù)中,有許多重要函數(shù)不滿足
傅氏積分定理中的絕對(duì)可積條件,即不滿足條件一種改進(jìn)思路是轉(zhuǎn)換為L(zhǎng)aplace求,但例如常數(shù),符號(hào)函數(shù),以及正,余弦函數(shù)等,我們希望其能正確地反應(yīng)出頻率的特性,因此引入了單位脈沖函數(shù)及其傅氏變換就可以求出它們的傅氏變換.§1.2Fourier變換
2.單位脈沖函數(shù)及其傅氏變換
在物理和工程技術(shù)中,常常會(huì)碰到單位脈沖函
數(shù).因?yàn)橛性S多物理現(xiàn)象具有脈沖性質(zhì),如在電學(xué)中,要研究線性電路受具有脈沖性質(zhì)的電勢(shì)作用后產(chǎn)生的電流;在力學(xué)中,要研究機(jī)械系統(tǒng)受沖擊力作用后的運(yùn)動(dòng)情況等.研究此類問題就會(huì)產(chǎn)生我們要介紹的單位脈沖函數(shù).
工程上將d-函數(shù)稱為單位脈沖函數(shù),可將d-函數(shù)用一個(gè)長(zhǎng)度等于1的有向線段表示,這個(gè)線段的長(zhǎng)度表示d-函數(shù)的積分值,稱為d-函數(shù)的強(qiáng)度.tOd(t)1稱de(t)的弱極限為d-函數(shù),記為d(t).即de(t)1/eeOd-函數(shù)有性質(zhì):(1)篩選性質(zhì)事實(shí)上f(t)是連續(xù)函數(shù),按積分中值定理知:=(2)函數(shù)為偶函數(shù),即(3)其中,稱為單位階躍函數(shù).反之,有
一般地,有d-函數(shù)的Fourier變換為:于是常數(shù)1
與d
(t)構(gòu)成了一Fourier變換對(duì).證法2:若F(w)=2pd(w),
由Fourier逆變換可得.例1
證明:2pd(w)和1構(gòu)成Fourier變換對(duì)證法1:=?
[]=??[1]tOd(t)1wOF(w)1常數(shù)1單位脈沖函數(shù)d
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024簡(jiǎn)易商用土地出租協(xié)議范本詳解版
- 2025年度體育場(chǎng)館委托運(yùn)營(yíng)管理與賽事組織合同4篇
- 2024知名電商平臺(tái)與供應(yīng)商之間的2024年貨品采購(gòu)合同
- 2024預(yù)制件加工與裝配式建筑構(gòu)件質(zhì)量檢測(cè)合同3篇
- 廣東某光儲(chǔ)充研產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2025年度文化遺址保護(hù)性裝修設(shè)計(jì)服務(wù)合同4篇
- 2025年度個(gè)人工廠品牌經(jīng)營(yíng)權(quán)及資產(chǎn)轉(zhuǎn)讓合同4篇
- 2025年江蘇常熟開關(guān)制造有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年度個(gè)人信用卡透支合同范本大全4篇
- 2025年度個(gè)人房產(chǎn)租賃合同附件及補(bǔ)充協(xié)議范本4篇
- 《諫太宗十思疏》《答司馬諫議書》-統(tǒng)編版高中語文必修下冊(cè)
- 02R112 拱頂油罐圖集
- GB/T 42249-2022礦產(chǎn)資源綜合利用技術(shù)指標(biāo)及其計(jì)算方法
- 扶梯吊裝方案
- GB/T 712-2011船舶及海洋工程用結(jié)構(gòu)鋼
- GB/T 26846-2011電動(dòng)自行車用電機(jī)和控制器的引出線及接插件
- GB/T 18015.1-1999數(shù)字通信用對(duì)絞或星絞多芯對(duì)稱電纜第1部分:總規(guī)范
- 院醫(yī)學(xué)實(shí)習(xí)請(qǐng)假審批表
- 2020-2021學(xué)年青島版五年級(jí)上冊(cè)期末考試數(shù)學(xué)試卷(1)1
- 導(dǎo)師指導(dǎo)記錄表
- 七年級(jí)數(shù)學(xué)家長(zhǎng)會(huì)課件
評(píng)論
0/150
提交評(píng)論