版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
章節(jié)概述一、電流場(chǎng)的描述、電流場(chǎng)的若干運(yùn)動(dòng)學(xué)關(guān)系、電荷守恒律的積分形式和微分形式、恒定電流場(chǎng)的通量定理及其散度方程和邊值關(guān)系、導(dǎo)電介質(zhì)的電流動(dòng)力方程和金屬導(dǎo)電的微觀模型。二、旋轉(zhuǎn)帶電體的電流場(chǎng),及其相聯(lián)系的體電流密度、面電流密度和線電流強(qiáng)度。三、三種熱電效應(yīng)或溫差電效應(yīng)。四、電阻率和遷移率及其對(duì)溫度的依賴。3.1電流場(chǎng)的運(yùn)動(dòng)學(xué)關(guān)系3.2導(dǎo)電介質(zhì)中電流場(chǎng)動(dòng)力學(xué)方程3.3金屬導(dǎo)電的微觀模型3.4電源與電動(dòng)勢(shì)熱電效應(yīng)3.5直流電路三、恒定電流場(chǎng)直流電路23.1電流場(chǎng)的運(yùn)動(dòng)學(xué)關(guān)系電流場(chǎng)的概念電流密度矢量j電流強(qiáng)度I與j之關(guān)系穩(wěn)恒電流場(chǎng)系無(wú)源場(chǎng)討論—不斷膨脹的空間電荷所造成的電流場(chǎng)產(chǎn)生電流的條件j與載流子運(yùn)動(dòng)速度v之關(guān)系電荷守恒律及其定量表達(dá)式例題—旋轉(zhuǎn)帶電體形成的電流場(chǎng)▲電流場(chǎng)的概念電荷的運(yùn)動(dòng)形成電流。3圖(a),淺層電解槽中出現(xiàn)的二維電流場(chǎng)圖像。
圖(b),在大地某局域中出現(xiàn)的三維電流場(chǎng)圖像。。
圖(c),直流電路。它由電阻元件、導(dǎo)線和直流電源三者組成一閉合回路,其電流被局限于這一線型回路。
空間電荷的運(yùn)動(dòng),同樣地可以形成一個(gè)三維電流場(chǎng),或二維電流場(chǎng)或一維電流場(chǎng)。
帶電體運(yùn)動(dòng)起來(lái),或轉(zhuǎn)動(dòng)或平動(dòng),也將形成電流。
4▲產(chǎn)生電流的條件:靜止的連續(xù)介質(zhì),需具備以下兩個(gè)條件:(1)介質(zhì)體內(nèi)存在能自由運(yùn)動(dòng)的電荷。比如,金屬導(dǎo)體中的自由電子,溶液或氣體中的正、負(fù)自由離子,半導(dǎo)體中的電子和空穴。它們被統(tǒng)稱為載流子,其意為電流的載體之單元。體內(nèi)存在載流子的介質(zhì)統(tǒng)稱為導(dǎo)電介質(zhì)。(2)介質(zhì)體內(nèi)存在可驅(qū)使電荷運(yùn)動(dòng)的力??煞譃閮深?,一類為靜電場(chǎng)力,另一類為非靜電力。非靜電力:直流電源內(nèi)部因化學(xué)勢(shì)不同而產(chǎn)生的化學(xué)力,載流子濃度差產(chǎn)生的擴(kuò)散力,載流子溫度差產(chǎn)生的溫差力,磁場(chǎng)施于運(yùn)動(dòng)電荷的洛倫茲力,磁場(chǎng)變化產(chǎn)生的渦旋電場(chǎng)力,等等。5例:對(duì)于一般絕緣載流導(dǎo)線而言,當(dāng)其線徑為1mm左右,其額定電流密度約為10A/mm2;而當(dāng)其線徑為5mm左右,其額定電流密度降為約4A/mm2。▲電流密度矢量j:
單位時(shí)間內(nèi)通過(guò)單位正截面的電量公式(3.1):電流密度單位:(安/米2)6(1)電流密度矢量場(chǎng)j(p)
可以用電流場(chǎng)給出逐點(diǎn)定量描述。
(2)可以由電流密度矢量求得通過(guò)任意面元的電量值。
在圖3.2(a)中,斜面元與對(duì)應(yīng)的正面元之關(guān)系:通過(guò)斜面元的電量值等于通過(guò)正面元的電量值:(公式3.2)或7▲j與載流子運(yùn)動(dòng)速度ν之關(guān)系:載流子的定向運(yùn)動(dòng)形成電流:如圖所示,一定時(shí)間內(nèi)載流子的運(yùn)動(dòng)所經(jīng)過(guò)的體積。,其中所含電量:由公式(3.1)有:最后得(公式3.3):對(duì)于金屬,其導(dǎo)電載流子均為自由電子(-e),上式可寫成:
(3.3’)對(duì)于電解液,其導(dǎo)電載流子同時(shí)有正離子與負(fù)離子,則
,(3.3”)這兩項(xiàng)電流密度是同向的,雖然速度是反向的。8()()9例題:試估算載流導(dǎo)體中自由電子定向運(yùn)動(dòng)速度(數(shù)量級(jí))設(shè)其電流密度為Nmol6104對(duì)于一般金屬:1061023在假設(shè)每個(gè)原子貢獻(xiàn)一個(gè)自由電子的前提下自由電子數(shù)密度為:相應(yīng)的自由電荷體密度為:自由電子定向運(yùn)動(dòng)速率為:I==,(→0)10▲電流強(qiáng)度I與j之關(guān)系:電流強(qiáng)度I:單位時(shí)間通過(guò)該曲面的電量,單位為安倍。=A1安培電流等于在1秒鐘內(nèi)通過(guò)1庫(kù)侖電量電量dQ等于(S)面上大量小面元ds所通過(guò)電量dq之和,則有:11最終電流強(qiáng)度與電流密度矢量之關(guān)系式為:(公式3.4’)
式(3.4’)表達(dá)的j與I的關(guān)系,完全相同于靜電學(xué)中場(chǎng)強(qiáng)E與電通量的關(guān)系:12▲
電荷守恒律及其定量表達(dá)式:一個(gè)孤立系統(tǒng)的總電荷量不變,即在任何時(shí)刻,系統(tǒng)的正電荷與負(fù)電荷之代數(shù)和保持不變?!镫姾墒睾懵墒谴罅繉?shí)驗(yàn)事實(shí)的總結(jié)。1897年,英國(guó)物理學(xué)家J.J.湯姆孫陰極射線是由電子所組成電子的發(fā)現(xiàn)及其荷質(zhì)比的確定,為精確建立電荷守恒律圖(b),在電流場(chǎng)j(r)中,考察一閉合()所包圍的區(qū)域(V)內(nèi)電量變化率。我們約定()上面元ds方向?yàn)槠渫夥ň€方向,于是,當(dāng),意味著流出電量,則;當(dāng),意味著流入電量,則。13電荷守恒率:區(qū)域內(nèi)所含總電量:則有:電荷守恒率數(shù)學(xué)表達(dá)式:(公式3.5)式(3.5)也可以進(jìn)一步顯現(xiàn)為:
(公式3.5’)14注意到導(dǎo)電介質(zhì)體內(nèi)的原子實(shí)分布不動(dòng),即,故有可得電荷守恒律的微分表達(dá)式:或(公式3.6)借助數(shù)學(xué)場(chǎng)論中的高斯定理:15▲
穩(wěn)恒電流場(chǎng)系無(wú)源場(chǎng):
穩(wěn)恒電流場(chǎng)j(r),其相聯(lián)系的電場(chǎng)必為靜電場(chǎng),電荷分布必處?kù)o止?fàn)顟B(tài),與時(shí)間t無(wú)關(guān),即:或進(jìn)一步由公式3.6有:(公式3.7)或這表明在穩(wěn)恒電流場(chǎng)中,處處散度為零?;蛘哒f(shuō),穩(wěn)恒電流場(chǎng)中的電流線即j線總是閉合的,無(wú)頭無(wú)尾,形成一個(gè)閉合環(huán)路。簡(jiǎn)言之,穩(wěn)恒電流場(chǎng)系無(wú)源場(chǎng)。關(guān)于穩(wěn)恒電流場(chǎng)必為無(wú)源場(chǎng)的結(jié)論,為動(dòng)力學(xué)機(jī)制指明了一條途徑,那就是單憑靜電場(chǎng)是不可能形成穩(wěn)恒電流場(chǎng)的,因?yàn)殪o電場(chǎng)線不可能是閉合的如圖3.4(a)所示一均勻帶電圓環(huán)繞圓心軸旋轉(zhuǎn),其線電荷密度為,角速度為。則它在半徑為R的圓周上造成一線電流,其電流強(qiáng)度為:16▲例題:
旋轉(zhuǎn)帶電體形成的電流場(chǎng)。I=與此類似的情況是,一帶電粒子q,以角速度作圓周運(yùn)動(dòng),而造成的等效電流強(qiáng)度為I=如圖3.4(b)所示,一均勻帶電圓片繞圓心軸旋轉(zhuǎn),其面電荷密度為(),角速度為。則它在半徑為R的圓片上造成一個(gè)面電流場(chǎng)。仿照體電流密度j的定義方式,可以定義出一個(gè)面電流密度:17進(jìn)一步可得:由可得:該面電流密度值非均勻,隨與圓心的距離增加而線性增大,雖然面電荷密度是均勻的。r如圖3.4(c),一均勻帶電球體繞一直徑軸而旋轉(zhuǎn),其體電荷密度為(),角速度為,則其造成的體電流密度函數(shù),倒是我們所熟悉的,18運(yùn)動(dòng)電荷一般情形旋轉(zhuǎn)帶電體體電荷運(yùn)動(dòng)體電流密度球體
面電荷運(yùn)動(dòng)面電流密度圓片線電荷運(yùn)動(dòng)電流強(qiáng)度圓環(huán)
帶電粒子運(yùn)動(dòng)電流元粒子
rI=如圖3.5所示,一球狀空間電荷區(qū),設(shè)其初始半徑為,初始電荷體密度為,其表面以速率向外不斷膨脹,試討論其造成的電流場(chǎng)19▲討論題:
不斷膨脹的球狀空間電荷所造成的電流場(chǎng)提示:假設(shè)該膨脹過(guò)程近似為一準(zhǔn)靜態(tài)過(guò)程,即任意時(shí)刻其體內(nèi)電荷近似為一均勻分布;推演出發(fā)點(diǎn)擬為203.2導(dǎo)電介質(zhì)中電流動(dòng)力方程引言電阻率&電導(dǎo)率
導(dǎo)電介質(zhì)中電流動(dòng)力方程導(dǎo)線怎樣成為電流管小結(jié)—恒定電流場(chǎng)的基本規(guī)律歐姆定律電阻率與溫度的關(guān)系
關(guān)于導(dǎo)電介質(zhì)的體電荷密度恒定電流場(chǎng)邊值關(guān)系和圖象討論—靜電高壓球漏電問(wèn)題▲引言
泛泛而論,電場(chǎng)力是驅(qū)動(dòng)電荷運(yùn)動(dòng)的一種動(dòng)力,從而形成一個(gè)電流場(chǎng).然而,定量上j與E的關(guān)系卻取決于運(yùn)動(dòng)電荷的處境,是載流子運(yùn)動(dòng)于導(dǎo)電介質(zhì)體內(nèi),或是電子束、離子束運(yùn)動(dòng)于電真空器件中的空間.這兩種場(chǎng)合下,j與E之關(guān)系,或電流I與電壓U之關(guān)系,是截然不同的.相對(duì)而言,運(yùn)動(dòng)于導(dǎo)電介質(zhì)中的載流子動(dòng)力學(xué)問(wèn)題較為簡(jiǎn)單,且為常見(jiàn)實(shí)用情形,而空間電荷運(yùn)動(dòng)的動(dòng)力學(xué)問(wèn)題較為復(fù)雜.本節(jié)主要論述導(dǎo)電介質(zhì)中與之關(guān)系,稱其為電流動(dòng)力方程,這要從歐姆定律說(shuō)起.21德國(guó)物理學(xué)家G.S.歐姆,從1825年開(kāi)始對(duì)金屬細(xì)絲的電導(dǎo)率進(jìn)行實(shí)驗(yàn)研究,于次年總結(jié)出,一導(dǎo)線兩端的電壓與通過(guò)的電流和其電阻三者之間遵從一個(gè)簡(jiǎn)單的比例關(guān)系,這被后人謂之歐姆定律?!鴼W姆定律
圖3.6(a),其電流強(qiáng)度I與電壓U之間呈現(xiàn)—線性關(guān)系,即引入一比例常數(shù)R,將這一線性關(guān)系寫成一等式:(歐姆定律)(公式3.8)為材料的電阻率,它系物質(zhì)電性參數(shù),其單位為:
,稱之“歐.米”22表達(dá)式中R值稱為該元件的電阻,圖3.6(b)顯示了純電阻元件的伏安特性,它呈現(xiàn)線性關(guān)系.電阻的單位為:R=V/A,
記作,謂之“歐姆”.電阻率&電導(dǎo)率對(duì)于一般材料制成的電阻絲其R值正比于其長(zhǎng)度l,而反比于其正截面積S,即:引入一比例常數(shù),將以上關(guān)系寫成一個(gè)等式:三類材料的電阻率數(shù)量級(jí)范圍為:金屬;半導(dǎo)體;絕緣介質(zhì)
.23金屬金屬鋰8.59.1鈦82.089.0鈉4.34.6鎳6.67.35鉀6.16.9鋅5.55.95鋁2.532.72鎘6.77.25鐵8.99.9汞93.795.4銅1.561.68鎵40.843.9銀1.471.58銦8.359.1金2.062.21砷35.237.6錫10.411.3鉛19.520.724▲電導(dǎo)G和電導(dǎo)率。電導(dǎo):電阻的倒數(shù);電導(dǎo)率:電阻率的倒數(shù)。記作S,謂之“西門子”25表3.3一些非金屬物質(zhì)的電導(dǎo)率表3.3一些非金屬物質(zhì)的電導(dǎo)率其含義為,溫度改變或而引起的電阻率變化比.
金屬電阻率隨溫度升高而增加,且在一個(gè)相當(dāng)寬的溫度區(qū)間,函數(shù)呈現(xiàn)線性變化,引入電阻率的溫度系數(shù),用以反映電阻率隨溫度變化的敏感程度,它定義為:26▲電阻率與溫度的關(guān)系:單位:或純金屬的電阻率溫度系數(shù)約為.汞:銀:絕緣介質(zhì)和半導(dǎo)體,其電阻率隨溫度變化的趨勢(shì)是與金屬相反的,其隨溫度上升而減少,相應(yīng)有負(fù)溫度系數(shù).特別是半導(dǎo)體,其對(duì)溫度的依賴關(guān)系十分敏感,且呈現(xiàn)非線性,其隨溫度上升而呈指數(shù)式減小.在室溫下,半導(dǎo)體材料溫度系數(shù)的數(shù)量級(jí)約為(公式3.11)27各種金屬的電阻率圖銅金鎢銀28
對(duì)導(dǎo)電介質(zhì)電阻率及其溫度系數(shù)的研究,具有十分重要的應(yīng)用價(jià)值和理論意義.
一、利用半導(dǎo)體材料電阻率的熱敏性而制成熱敏電阻,用于探溫、測(cè)溫和控溫。
二、將溫度訊號(hào)轉(zhuǎn)化為電訊號(hào),從而實(shí)現(xiàn)某種自動(dòng)控制.
為了保證電路的穩(wěn)定性和電阻的穩(wěn)定值,人們尋求到某些特殊的合金,具有甚小的溫度系數(shù),約為,具體參見(jiàn)表3.4.
導(dǎo)電介質(zhì)的電阻率及其溫度系數(shù)是可觀測(cè)量,人們可以憑據(jù)實(shí)驗(yàn)曲線,以審視關(guān)于介質(zhì)導(dǎo)電微觀機(jī)制及其給出的電阻率微觀公式的正確性.
注:1911年,荷蘭科學(xué)家卡莫林·昂納斯發(fā)現(xiàn)了水銀在液氦溫度4.2K時(shí)的零電阻現(xiàn)象,從而開(kāi)創(chuàng)了人類對(duì)于超導(dǎo)電性研究的百年新紀(jì)元.關(guān)于物質(zhì)超導(dǎo)電性,留待本書電磁感應(yīng)一章作較全面介紹.材料電阻率還與壓強(qiáng)p有關(guān),一般呈現(xiàn)正效應(yīng),即隨壓強(qiáng)上升而增加,也有個(gè)別金屬呈現(xiàn)負(fù)壓強(qiáng)系數(shù).電阻率的壓強(qiáng)系數(shù)定義為:在常溫、壓強(qiáng)在區(qū)間,金屬的壓強(qiáng)系數(shù)約比如,汞:;銀:;銅:.29(公式3.11’)合金合金金-鉻0.330.001銅鎳合金0.430.2石墨8.00-0.2標(biāo)準(zhǔn)電阻合金0.450.04錳系材料0.500.02鉑-銥0.322.0碳刷40—鉑-銠0.201.7康銅0.500.03錳銅合金0.510.008錳鎳銅合金0.430.02錫鋅合金(約銅)0.1271.5鉻-鎳10120.2鋅鎳銅合金(白銅)0.300.4將其應(yīng)用于電流場(chǎng)中一細(xì)小電流管,如圖所示,并令,于是得到:30▲導(dǎo)體介質(zhì)中電流動(dòng)力學(xué)方程:將純電阻元件的歐姆定律,顯示為一積分形式:考慮到方向,可將上式寫成歐姆定律的微分形式:或(公式3.12)31
電流動(dòng)力方程鮮明地反映了是電場(chǎng)力推動(dòng)載流子作定向運(yùn)動(dòng)這一動(dòng)力學(xué)機(jī)制.它具有多方面的重要意義,茲闡述如下:
(1)反映了j與E的點(diǎn)點(diǎn)對(duì)應(yīng)關(guān)系,即
,這表明某處的電流是由該處電場(chǎng)驅(qū)動(dòng)所致.
(2)反映了j與E的時(shí)時(shí)對(duì)應(yīng)關(guān)系,即
,這表明某時(shí)刻的電流是由當(dāng)時(shí)的電場(chǎng)驅(qū)動(dòng)所致.32(3)反映了一恒定電流場(chǎng)對(duì)應(yīng)著一個(gè)靜電場(chǎng),即推論:在導(dǎo)電介質(zhì)中若建立起一個(gè)恒定電流場(chǎng),則導(dǎo)電介質(zhì)中可能存在的體電荷密度或面電荷密度,必定與時(shí)間無(wú)關(guān),即
(公式3.13)(4)如果在導(dǎo)電介質(zhì)中,同時(shí)存在靜電場(chǎng)E和非靜電場(chǎng)K,則在該區(qū)域中電流動(dòng)力方程推廣為
(公式3.14)這里,K定義為單位正電荷所受到的非靜電力,即
(公式3.14’)
表示原子實(shí)或正離子的體電荷密度,而表示載流子或負(fù)離子的體電荷密度,兩者處處時(shí)時(shí)代數(shù)和為零,這并不排斥或的運(yùn)動(dòng),或兩者均在運(yùn)動(dòng)此結(jié)果表明,這場(chǎng)合有體電流,卻無(wú)體電荷,似難理解.其實(shí),這體電荷含兩項(xiàng):即33▲關(guān)于導(dǎo)體介質(zhì)的體電荷密度:在恒定電流場(chǎng)的均勻?qū)щ娊橘|(zhì)體內(nèi),無(wú)體電荷密度,即
處處為零.可作如下推演:(恒定電流場(chǎng))(設(shè)K為零)(為常數(shù))(應(yīng)用靜電場(chǎng)散度方程)于是(公式3.15)以上證明過(guò)程先后用到三個(gè)條件,即恒定電流場(chǎng),均勻電導(dǎo)率,和不存在非靜電力.換言之,當(dāng)恒定電流場(chǎng)存在于非均勻?qū)щ娊橘|(zhì),則其體內(nèi)可能出現(xiàn)的景象.抑或,在均勻?qū)щ娊橘|(zhì)內(nèi),同時(shí)存在非靜電力場(chǎng)K(r),其體內(nèi)也有可能出現(xiàn).茲對(duì)此考量如下.34我們大體已知,在磁場(chǎng)中的運(yùn)動(dòng)電荷將受到一個(gè)洛侖茲力,這是一種非靜電力.而一個(gè)載流體,既會(huì)產(chǎn)生磁場(chǎng),其體內(nèi)又有運(yùn)動(dòng)載流子,故一載流體周圍必伴有一個(gè)洛侖茲力場(chǎng)K(r),再考量其散度是否為零.這些物事將在隨后恒定磁場(chǎng)一章詳述,屆時(shí)將用到(3.15’)式.(公式3.15’)35▲導(dǎo)線怎樣成為電流管:在導(dǎo)線內(nèi)部的電場(chǎng)E,總是沿著導(dǎo)線的切線方向,電流總是沿著導(dǎo)線切線方向.載流導(dǎo)線通過(guò)其表面自由電荷的分布和調(diào)整,使自己成為引導(dǎo)的電流管,或成為引導(dǎo)的電力管.由此可見(jiàn),載流導(dǎo)線或載流體的表面隨處分布著自由電荷
跨過(guò)界面的電流密度之法線分量總是連續(xù)的,如圖3.10(a)所示.這不難理解,若不連續(xù),必將繼續(xù)累積面電荷,其后果總是使強(qiáng)者變?nèi)?,而使弱者變?qiáng),直至(3.16)式得以滿足方可恒定.36▲恒定電流場(chǎng)邊值關(guān)系和圖像:
兩種導(dǎo)電介質(zhì)的交界面,一般將出現(xiàn)面電荷,從而導(dǎo)致其兩側(cè)的場(chǎng)發(fā)生突變,反映這種突變關(guān)系的正是邊值關(guān)系:或(公式3.16)將靜電場(chǎng)的環(huán)路定理應(yīng)用于跨過(guò)界面的小矩形框,遂得到另一條關(guān)于場(chǎng)切向分量的邊值關(guān)系:37電流法線分量的連續(xù),必然導(dǎo)致電場(chǎng)法線分量的突變.茲說(shuō)明如下.據(jù)得:,或(公式3.16’)或同理,電場(chǎng)切向分量的連續(xù),必致電流切向分量的突變,,或(公式3.16”)(公式3.16”’)圖顯示幾種典型電導(dǎo)率時(shí)的場(chǎng)線和場(chǎng)線圖象.(a)為一般實(shí)際情況,;(b)為一種極端情況,;(c)為另一極端情況,因有限而為無(wú)限,故,即皆為零.根據(jù)邊值關(guān)系(3.16’’)得,于是,即超導(dǎo)電線四周的電流線必與其表面正交.3839▲小結(jié)——恒定電流場(chǎng)的基本規(guī)律(1)場(chǎng)的積分方程和導(dǎo)電介質(zhì)方程(2)體內(nèi)微分方程(3)界面邊值關(guān)系(4)電荷守恒律的表達(dá)式,其積分形式為(各向同性線性導(dǎo)電介質(zhì))或或在均勻?qū)щ娊橘|(zhì)體內(nèi),其微分形式為在穩(wěn)恒條件下
夏季濕熱空氣,將使一靜電高壓導(dǎo)體球放電即漏電,如圖3.12所示,從而產(chǎn)生了一變化的電流場(chǎng).設(shè)高壓球初始電壓為,半徑為R,濕熱空氣電導(dǎo)率為.試求出:(1)電流場(chǎng)函數(shù)式.(2)球殼總電量隨時(shí)間變化函數(shù)式.(3)球殼電量減為的時(shí)所需的時(shí)間,即放電時(shí)間常數(shù),它滿足40▲討論——靜電高壓球漏電問(wèn)題
為遷移率,其單位為.對(duì)于金屬,約為量級(jí);電解質(zhì)溶液中,離子遷移率約為量級(jí).而對(duì)于半導(dǎo)體材料,其遷移率因載流子類型而異,一般為(電子)>(空穴);比如,輕度摻雜的硅材料,在室溫下的電子遷移率為,其空穴遷移率為
.對(duì)于線性導(dǎo)電介質(zhì),其體內(nèi)載流子運(yùn)動(dòng)的定向速度即漂移速度正比于電場(chǎng).引入一比例系數(shù),而將兩者之關(guān)系寫成一等式如下,.413.3金屬導(dǎo)電的微觀模型載流子的遷移率金屬導(dǎo)電經(jīng)典電子論的困難試估算金屬傳導(dǎo)電子的平均自由程焦耳定律及其微觀機(jī)制金屬導(dǎo)電的微觀模型▲載流子的遷移率(公式3.17)42由電流運(yùn)動(dòng)學(xué)公式和電流動(dòng)力方程以及(3.17)式:,,,可得介質(zhì)電導(dǎo)率與其遷移率之關(guān)系:(公式3.18)這表明,介質(zhì)電導(dǎo)率正比于載流子濃度與其遷移率之乘積.式(3.18)是一個(gè)具有微觀意義的公式.大凡對(duì)宏觀上可觀測(cè)量電導(dǎo)率及其變化特點(diǎn)的微觀解釋,均可以從載流子濃度和遷移率兩個(gè)因素入手分析之.
比如:半導(dǎo)體材料電阻率的負(fù)溫度效應(yīng),源于其載流子濃度隨溫度上升而明顯地增加.
金屬中的電阻率的正溫度效應(yīng),是源于其遷移率隨溫度上升而減少.
43氣體正離子負(fù)離子氮1.291.82氧1.331.8氬1.371.7氦5.16.3氫5.78.6乙烷0.710.86苯0.180.21表3.5空氣中離子遷移率換言之,該式將電導(dǎo)的非線性效應(yīng),吸納到遷移率因子中,使其成為一個(gè)隨變化的函數(shù).于是,對(duì)于函數(shù)曲線的測(cè)量與研究,就等價(jià)于對(duì)材料的非線性導(dǎo)電性能的考量。44提兩點(diǎn):(1)對(duì)導(dǎo)電介質(zhì)遷移率的測(cè)量和研究,在村料科學(xué)中具有重要價(jià)值:
一方面,是因遷移率與電導(dǎo)率有著直接的關(guān)系。
另一方面,若載流子遷移率越高,則其漂移速度越大,于是該器件完成訊號(hào)處理的時(shí)間越短.(2)對(duì)于非線性導(dǎo)電介質(zhì),人們依然喜歡采用(3.17)形式以刻畫與
E關(guān)系,即(公式3.18’)45▲金屬導(dǎo)電的微觀模型金屬導(dǎo)電的動(dòng)力方程遵從
,這表明其體內(nèi)自由電子在電場(chǎng)力
作用下,所形成的電流密度維持不變.?金屬體內(nèi)的原子實(shí)形成了金屬晶格,而大量傳導(dǎo)電子在晶格空間中作隨機(jī)的無(wú)規(guī)熱運(yùn)動(dòng);在電場(chǎng)力作用下,傳導(dǎo)電子又添加了一個(gè)定向加速運(yùn)動(dòng);同時(shí),傳導(dǎo)電子與格點(diǎn)即原子實(shí)發(fā)生頻繁地碰撞,每碰撞一次,傳導(dǎo)電子便完全喪失掉此前被加速而獲得的定向速度,從零開(kāi)始重新被加速,直至下一次遭遇碰撞為止.這就是金屬晶格中傳導(dǎo)電子的運(yùn)動(dòng)圖象,亦即金屬導(dǎo)電的微觀模型按質(zhì)點(diǎn)力學(xué)之理,帶電粒子在恒力作用下其速度將隨時(shí)間而不斷增長(zhǎng),因而其產(chǎn)生的電流密度應(yīng)當(dāng)隨時(shí)間不斷增長(zhǎng)才對(duì).46金屬晶格中的傳導(dǎo)電子,其運(yùn)動(dòng)的自由程度是受限的,或者說(shuō),其自由漂移的路程是受限的,電場(chǎng)加速的平均時(shí)間
僅限于相繼兩次碰撞之間,因而,自由電子的平均定向漂移速度
也就被限定了,而宏觀上的電流正是這平均漂移速度所貢獻(xiàn)的.對(duì)此數(shù)學(xué)描寫如下:傳導(dǎo)電子所受庫(kù)侖力獲得定向運(yùn)動(dòng)加速度平均自由漂移時(shí)間獲得自由漂移末速度于是,相繼兩次碰撞間獲得平均漂移速度為:該式表明,在恒定電場(chǎng)作用下,傳導(dǎo)電子的平均漂移速度也是恒定的,且正比于電場(chǎng)強(qiáng)度,這就從微觀深度上揭示了金屬導(dǎo)電的線性規(guī)律.進(jìn)而,聯(lián)系(3.17)式和(3.18)式,遂得到兩個(gè)可觀測(cè)量即遷移率和電導(dǎo)率與微觀量的關(guān)系式:(公式3.19)(公式3.20)47在分子熱動(dòng)理論中,平均自由漂移時(shí)間
應(yīng)當(dāng)?shù)扔谄骄杂沙?/p>
與其平均熱運(yùn)動(dòng)速率
之比值,即(公式3.20’)自由電子氣的平均熱運(yùn)動(dòng)速率
遠(yuǎn)遠(yuǎn)大于其漂移運(yùn)動(dòng)速率
,
量級(jí)為
量級(jí)一般為
換言之,相繼兩次碰撞的自由漂移時(shí)間主要地取決于熱運(yùn)動(dòng)速率.可將(3.20)式進(jìn)一步表達(dá)為(公式3.20’’)這是金屬導(dǎo)電的經(jīng)典電子論給出的兩個(gè)公式.它們有助于說(shuō)明金屬遷移率或電導(dǎo)率受各種因素影響的動(dòng)因.注意到,其中電子電量
e,電子質(zhì)量m
和自由電子濃度
n,這三者與溫度無(wú)關(guān),因而值得注目的是,其中的平均自由程
和平均熱運(yùn)動(dòng)速率
對(duì)溫度的依賴關(guān)系,決定了金屬遷移率或電導(dǎo)率對(duì)溫度的依賴關(guān)系.48▲金屬導(dǎo)電經(jīng)典電子論的困難當(dāng)溫度上升,自由電子氣熱運(yùn)動(dòng)程度加劇,則其平均熱運(yùn)動(dòng)速率
增加,據(jù)(3.20’’)式,導(dǎo)致
或
減少,亦即電阻率
隨溫度上升而增加,這就成功地解釋了金屬電阻率的正溫度效應(yīng).然而,對(duì)于金屬
在相當(dāng)寬的溫度范圍呈現(xiàn)線性變化這一實(shí)驗(yàn)規(guī)律,經(jīng)典電子論卻無(wú)法給予完滿解釋.據(jù)分子熱動(dòng)理論,分子熱運(yùn)動(dòng)的平均平動(dòng)動(dòng)能為這一矛盾暴露了金屬電子論的局限和困難.在近代固體物理學(xué)中,將用量子理論處理金屬中電子-晶格相互作用,給出了金屬電阻率
的理論結(jié)果:代入(3.20”)式得:,故,即實(shí)驗(yàn)上卻是:(3.21)49▲試估算金屬傳導(dǎo)電子的平均自由程根據(jù)(3.20”)式,得金屬中電子漂移運(yùn)動(dòng)的平均自由程為:(略去負(fù)號(hào))借助(3.21)式,得:代入玻爾茲曼常數(shù)溫度電子質(zhì)量kg.J/Kkg.K.得注:金屬中的傳導(dǎo)電子和原子實(shí)之間存在強(qiáng)關(guān)聯(lián),因而影響其運(yùn)動(dòng)的質(zhì)量不是其慣性質(zhì)量,而是它的有效質(zhì)量
,經(jīng)專門實(shí)驗(yàn)測(cè)定,傳導(dǎo)電子的平均有效質(zhì)量
進(jìn)而,取金屬傳導(dǎo)電子的遷移率
,得50
的這一量級(jí)幾倍于金屬晶格相鄰格點(diǎn)之間隔d
.可以這樣來(lái)估算d
:金屬比重取,金屬元素的mol質(zhì)量取100g,即在1cm3體積中約含
個(gè)原子,得相應(yīng)的原子間隔為:cm兩者的比值:這比值表明,平均看來(lái)傳導(dǎo)電子掠過(guò)近10個(gè)原子實(shí)才遭遇到一次碰撞.?傳導(dǎo)電子在1秒時(shí)里.其漂移運(yùn)動(dòng)遭遇到多少次碰撞,即其碰撞頻率f為多少
次/秒引入焦耳熱功率體密度
一量,它定義為單位體積中的焦耳熱功率,即51▲焦耳定律及其微觀機(jī)制焦耳熱功率:單位時(shí)間中產(chǎn)生的熱能正比于電阻值
和電流強(qiáng)度
的平方.焦耳定律是一個(gè)揭示了傳導(dǎo)電流將電能轉(zhuǎn)化為熱能的定量規(guī)律.J/s=W(瓦),(公式3.22)焦耳定律的微分形式于是得到:W/m3.或
這表明,介質(zhì)電流場(chǎng)中某處的焦耳熱功率體密度,等于當(dāng)?shù)氐碾娮杪逝c電流密度平方之乘積,或等于當(dāng)?shù)仉妼?dǎo)率與電場(chǎng)強(qiáng)度平方之乘積.(公式3.22’)52傳導(dǎo)電子在電場(chǎng)作用下的定向漂移運(yùn)動(dòng),頻繁地與金屬晶格遭遇碰撞,將先前獲得的定向動(dòng)能轉(zhuǎn)化為金屬晶格的熱振動(dòng)能量,而使金屬材料升溫.對(duì)此定量考察如下:其獲得定向末速度為相應(yīng)的定向動(dòng)能為設(shè)傳導(dǎo)電子密度為設(shè)傳導(dǎo)電子平均漂移時(shí)間為時(shí)間里單位體積中傳導(dǎo)電子喪失掉的總定向動(dòng)能為:故,金屬晶格獲得的焦耳熱功率體密度為:(公式3.22’’)比對(duì)宏觀實(shí)驗(yàn)規(guī)律(3.22’)式,可見(jiàn)兩者定性上的一致性,均正比于
,且(3.22’’)式給出了金屬電導(dǎo)率與微觀量之關(guān)系式:533.4電源與電動(dòng)勢(shì)熱電效應(yīng)電源的作用電動(dòng)勢(shì)單一電路歐姆定律&內(nèi)阻的影響伽伐尼電池之一種—伏打電池電源端電壓與電動(dòng)勢(shì)的關(guān)系三種熱電效應(yīng)▲電源的作用▲佩爾捷效應(yīng),接觸電勢(shì)差▲湯姆孫效應(yīng),
溫差電動(dòng)勢(shì)
▲塞貝克效應(yīng),
熱電偶其一、提供非靜電力.其二、形成直流回路.其三、完成恒定電流線的循環(huán).54圖3.13直流電源的工作原理圖(a),電源內(nèi)部的非靜電力K
驅(qū)動(dòng)電量從B到A,造成電荷積累;圖(b),積累的電荷產(chǎn)生了一個(gè)靜電場(chǎng)E抗衡非靜電力K
.至(E+K=0),電荷不再累積,電源內(nèi)部處于一種靜態(tài)平衡;圖(c),接上導(dǎo)線,導(dǎo)線中的載流子在靜電場(chǎng)
驅(qū)動(dòng)下流動(dòng);圖(d),導(dǎo)線中的載流子在靜電場(chǎng)
驅(qū)動(dòng)下從A到B流動(dòng),同時(shí)非靜電力將電量從
B極驅(qū)動(dòng)至A
極,及時(shí)地加以補(bǔ)充,達(dá)到了一種動(dòng)態(tài)平衡.恒定電流的運(yùn)動(dòng)圖象:在電源內(nèi)部,存在非靜電力
K,它克服靜電力將電荷從負(fù)極驅(qū)動(dòng)到正極,而在電源外部,靜電場(chǎng)力將電荷從正極驅(qū)動(dòng)到負(fù)極,如此里應(yīng)外合,循環(huán)不止,形成了恒定電流回路55▲伽伐尼電池之一種——伏打電池凡兩種不同金屬浸于電解質(zhì)溶液,而獲得一恒定電動(dòng)勢(shì)的裝置,統(tǒng)稱為伽伐尼電池.
1780年意大利的解剖學(xué)家L.伽伐尼——首先發(fā)現(xiàn)伏打由電的接觸學(xué)說(shuō)發(fā)明了一種兩類導(dǎo)體的組合接觸法,
,即由一片片潮濕紙板(a
),隔開(kāi)一對(duì)對(duì)鋅板(A
)和銅板(B),這使伽伐尼電動(dòng)勢(shì)倍增,時(shí)稱其為伏打電堆,
伏打電堆和伏打電池成為十九世紀(jì)產(chǎn)生恒定電流的唯一手段.
恒定電流的獲得為研究電流的磁效應(yīng),熱效應(yīng)和電化學(xué)效應(yīng)即電解,提供了可靠的實(shí)驗(yàn)支持。56圖3.14(a)伏打電池;(b)電偶極層與電勢(shì)降落層伏打電池內(nèi)部機(jī)理:
圖(a):
一、銅板和鋅板分別插入CuSO4溶液和ZnSO4溶液,中部有一多孔屏,以防兩種電解液混合,同時(shí)為離子運(yùn)動(dòng)提供通道.
二、銅離子吸附銅板上,使銅板積累正電量,其接觸的溶液層便呈現(xiàn)負(fù)電量,兩者形成電偶極層.三、鋅離子進(jìn)入溶液帶正電量,鋅板帶上負(fù)電量.兩者形成電偶極層獲得端電壓.
57圖(b):
端電壓,它等于銅板與鋅板附近兩處偶極層分別所貢獻(xiàn)的電勢(shì)差之和.注:一、在電勢(shì)降落圖(b)中,溶液中C、D兩點(diǎn)為等電勢(shì),僅適用于目前靜態(tài)開(kāi)路的情形.
二、一旦外部接上負(fù)載和導(dǎo)線而構(gòu)成一回路,就有電流通過(guò)溶液自
D處至
C處,而正、負(fù)離子運(yùn)動(dòng)于溶液中將受到一粘滯阻力,這源于這些離子間的相互碰撞以及與水分子的碰撞.換言之,宏觀上看這一路溶液是有電阻的,稱其為電源的內(nèi)阻,三、伏打電池工作時(shí)其端電壓
將不足1.11V.段電勢(shì)會(huì)由于內(nèi)阻呈現(xiàn)線性上升,使58▲電動(dòng)勢(shì)電動(dòng)勢(shì)是衡量非靜電力做功能力的一個(gè)物理量,其定義為非靜電力沿閉合回路遷移單位正電荷時(shí)所做的功,即這是電動(dòng)勢(shì)的一個(gè)普遍定義式,適用于不同類型的電源和不同機(jī)制的非靜電力.對(duì)于伽伐尼這類集中性電源,其
K局限于電源內(nèi)部的正、負(fù)極之間,而在電源外部無(wú)K
,于是,其電動(dòng)勢(shì)表達(dá)為(伏特)公式(3.23)公式(3.23’)▲電源端電壓與電動(dòng)勢(shì)的關(guān)系(1)理想電源.無(wú)內(nèi)阻的電源被稱為理想電源,表示為
,其工作時(shí)的端電壓為該結(jié)果表明,不論電路負(fù)載大小,或回路電流I值大小和方向,理想電源的端電壓恒等于電動(dòng)勢(shì)值.故人們稱謂內(nèi)阻為零的電源是一恒壓源.公式(3.24)59(2)實(shí)際電源.一般情形電源含有內(nèi)阻
r,用兩個(gè)指標(biāo)
反映一個(gè)電源的性能.為考量此時(shí)的端電壓與電動(dòng)勢(shì)之關(guān)系,可以將實(shí)際電源看為一理想電源串接—純電阻,如圖3.15所示,即實(shí)際電源
=理想電源+純電阻
,圖(a),當(dāng)電流I
在內(nèi)部由負(fù)極B
流向正極
A,則其端電壓圖(b),當(dāng)電流I
在內(nèi)部從正極A流向負(fù)極B
,則其端電壓此時(shí),端電壓小于電動(dòng)勢(shì)值,且在電量遷移過(guò)程中,電源力K作正功,而將電源能比如化學(xué)能轉(zhuǎn)化為電勢(shì)能.人們稱此狀態(tài)為電源放電.此時(shí)端電壓大于電動(dòng)勢(shì)值,且在電量遷移過(guò)程中,電源力K
作負(fù)功,亦即電場(chǎng)力
E克服K
而作正功,將電勢(shì)能轉(zhuǎn)化為電源能比如化學(xué)能.人們稱此工作狀態(tài)為電源充電,公式(3.24’)公式(3.24’’)60▲單一電路歐姆電阻內(nèi)阻的影響圖(a)所示為單一電源的簡(jiǎn)單電路,其中一負(fù)載電阻為R
,一電源為.連接導(dǎo)線為高電導(dǎo)材質(zhì),可忽略其電阻,采取以下近似:則電源端電壓為:又故最后得全電路歐姆定律:或(歐姆定律)(據(jù)(2.24’)式)公式(3.25)由此可見(jiàn),當(dāng)負(fù)載R
有變化,將導(dǎo)致端電壓的變化,雖然電源
是不變的.此謂端電壓的不穩(wěn)定性,這源于電源含內(nèi)阻
r.若內(nèi)阻為零,則端電壓恒為電動(dòng)勢(shì)
值,此時(shí)當(dāng)負(fù)載
R變化,電流I
也隨之變化,而兩者仍滿足簡(jiǎn)單的比例關(guān)系,即
61電源內(nèi)阻帶來(lái)的又一影響表現(xiàn)在電功率方面.電源消耗的功率為:電源輸出功率或有用功率,就是負(fù)載上的電功率:此式表明,
與R關(guān)系為非線性,如圖所示:開(kāi)路:短路:當(dāng)
時(shí),
值達(dá)到極大:此時(shí),電源能量轉(zhuǎn)化效率
值卻僅為.62▲三種熱電效應(yīng)(1)佩爾捷效應(yīng)&接觸電勢(shì)差.圖3.17(a)佩爾捷電動(dòng)勢(shì)
;(b)第三者插入其間不會(huì)改變接觸電勢(shì)差
一、兩種不同金屬A與B相密接.二、兩者自由電子濃度的差別或兩者表面功函數(shù)的差別,導(dǎo)致自由電子彼此交換數(shù)量的不對(duì)等.三、在接觸處出現(xiàn)了一電偶極層.造成了一恒定電勢(shì)差
,稱其為接觸電勢(shì)差。相應(yīng)的等效電源如圖所示,其電動(dòng)勢(shì)
稱為佩爾捷電動(dòng)勢(shì).電動(dòng)勢(shì)
與電勢(shì)差
兩者互為表里.63佩爾捷電動(dòng)勢(shì)
之?dāng)?shù)值與兩種金屬材質(zhì)有關(guān),也與溫度有關(guān),通常在
當(dāng)接上外電源而有電流通過(guò)時(shí),接觸面(或接頭處)將發(fā)生吸熱或放熱現(xiàn)象.單位時(shí)間中接觸處單位面積吸收或釋放的熱量
正比于電流密度
j,即(公式3.26)
比例系數(shù)
P稱為佩爾捷系數(shù),其單位相同于電壓?jiǎn)挝?/p>
,其值與金屬種類以及溫度有關(guān),即
,佩爾捷效應(yīng)是法國(guó)物理學(xué)家J.C.A佩爾捷于1834年發(fā)現(xiàn)的,當(dāng)時(shí)他在銅絲兩頭各接一根鉍絲,并將兩根鉍絲分別接到一直流電源的正、負(fù)極,通電后他發(fā)現(xiàn)一個(gè)接頭變熱,而另一接頭變冷.64若在金屬A,B接觸處插入第三者金屬C,這不會(huì)改變A,B兩端的電勢(shì)差.對(duì)此證明如下,參見(jiàn)圖3.17(b).設(shè)接觸電勢(shì)差正比于兩者的自由電子濃度差,即
當(dāng)?shù)谌逤
插入其間后,有故,此時(shí)
的電勢(shì)差應(yīng)為:這里已用到等溫條件,即
A,B,C三者處于同一溫度,從而保證了比例系數(shù)
為同一數(shù)值.65(2)湯姆孫效應(yīng)&溫差電動(dòng)勢(shì).湯姆孫電動(dòng)勢(shì):
如圖(a),金屬棒其一端處于高溫
,其另一端處于低溫
,于是,金屬中的自由電子象氣體分子一樣,由高溫端向低溫端擴(kuò)散.從宏觀效果上看,這等效于存在一非靜電力K
,驅(qū)使自由電子遷移,造成電荷積累,而出現(xiàn)一個(gè)自建場(chǎng)
E,以反抗K;直至
E,K平衡,最終獲得一恒定電壓.其等效電源圖如圖(b),其中為湯姆孫電動(dòng)勢(shì)。(a)溫度差導(dǎo)致自由電子熱擴(kuò)散(b)湯姆孫電動(dòng)勢(shì)
(c)此電流過(guò)程中導(dǎo)體吸熱(d)此電流過(guò)程中導(dǎo)體放熱其中比例系數(shù)
為湯姆孫系數(shù),其單位.值與金屬材質(zhì),溫度有關(guān),其量級(jí)約在
.比如,設(shè)溫差
為
,則可獲得湯姆孫電動(dòng)勢(shì)或端電壓為
66
非靜電力K
正比于當(dāng)?shù)氐臏囟忍荻龋矗?公式3.27)憑借(3.27)式可以表達(dá)湯姆孫電動(dòng)勢(shì)為:(公式3.27’)湯姆孫效應(yīng):有溫度梯度之導(dǎo)體內(nèi)的熱電轉(zhuǎn)化效應(yīng),導(dǎo)體中除了產(chǎn)生了不可逆的焦耳熱外,還要吸收或放出一定的熱量.
在單位時(shí)間單位體積中吸收或放出的熱量
,正比于電流密度
和溫度梯度
,即(公式3.27’’)67(3)賽貝克效應(yīng)&熱電偶.將佩爾捷效應(yīng)和湯姆孫效應(yīng)結(jié)合起來(lái),構(gòu)成一個(gè)循環(huán),就將產(chǎn)生一回路電流,而無(wú)需外加一直流電源.如圖3.19(a)所示,此現(xiàn)象是T.J.塞貝克于1821年發(fā)現(xiàn)的.它等效于四個(gè)熱電動(dòng)勢(shì)的串接,含兩個(gè)極性相同的佩爾捷電動(dòng)勢(shì)
和
,兩個(gè)湯姆孫電動(dòng)勢(shì)
和
,如圖3.19(b)所示。(a)考量回路熱電動(dòng)勢(shì)
(b)等效電路68回路最終是否出現(xiàn)電流,取決于回路電動(dòng)勢(shì)是否為非零.對(duì)此考量如下.試選一閉合回路
,其電動(dòng)勢(shì)最后求得塞貝克回路熱電動(dòng)勢(shì)為:(公式3.28)式(3.28)表明:a.若
,即使
,其,回路無(wú)電流.b.若
,即使
,其
,回路無(wú)電流.c.惟有
,且
,才有可能
d.為了加強(qiáng)這熱電動(dòng)勢(shì),應(yīng)尋求(3.28)式中兩項(xiàng)為同一正號(hào)或同一負(fù)號(hào).注意到總是
,故選擇
,且
是合宜的,或選擇
,且
亦合宜.69熱電偶溫度范圍銅-康銅鐵-康銅鎳鉻-鎳鉑銠-鉑合金成份康銅鎳鉻黃銅錳銅表3.6常用熱電偶及其合金成分圖3.20(a)常用熱電偶的溫差電動(dòng)勢(shì)曲線,(b)熱電偶測(cè)溫工作原理佩爾捷效應(yīng)和湯姆孫效應(yīng),以及兩者結(jié)合的塞貝克效應(yīng),均系熱電轉(zhuǎn)換效應(yīng),它們提供了一種熱能與電能彼此可逆轉(zhuǎn)化的機(jī)制.利用熱電效應(yīng)可使塞貝克回路在高溫處放熱,在低溫處吸熱,從而實(shí)現(xiàn)制冷,稱其為溫差制冷.熱電偶可用于測(cè)溫,具有反應(yīng)快、精度高、測(cè)溫范圍寬和測(cè)量對(duì)象廣泛等諸多優(yōu)點(diǎn).熱電偶測(cè)溫的工作原理,如圖3.20(b)所示,它由兩種不同材質(zhì)的金屬絲組成,兩種絲材
和
的一端焊接在一起作為工作端,置于被測(cè)溫度
處,另兩個(gè)端點(diǎn)作為自由端分別置于同一參考溫度
處,比如冰水共存的杯中
,再用兩根導(dǎo)線
將這兩端引向一測(cè)量?jī)x表名為電勢(shì)差計(jì).電勢(shì)差計(jì)精測(cè)出電勢(shì)差
,其數(shù)值就等于當(dāng)
閉合為一回路時(shí)的塞貝克電動(dòng)勢(shì)
,這是因?yàn)榈谌?/p>
的插入不會(huì)改變?cè)械臒犭妱?dòng)勢(shì).再由事先已經(jīng)獲得的這一對(duì)熱電偶的
曲線,查出與
值對(duì)應(yīng)的溫差值
,最終測(cè)得.在半導(dǎo)體中同樣存在上述三種熱電效應(yīng),且比金屬中的更顯著.金屬中的熱電動(dòng)勢(shì)率約為
,而半導(dǎo)體中一般為
,有的甚至達(dá).故金屬中的塞貝克效應(yīng)主要用于制成熱電偶以測(cè)溫,而半導(dǎo)體的熱電動(dòng)勢(shì)可用于溫差發(fā)電.70713.5直流電路概述
串聯(lián)電路中高阻起主要作用并聯(lián)電路中低阻起主要作用
直流電橋補(bǔ)償電路&電熱差計(jì)
基爾霍夫方程組例題——非平衡橋路電流及其靈敏度電壓源&電流源及其變換
討論——含電容的電路之電壓分配問(wèn)題▲概述基本內(nèi)容:建立其電壓分配和電流分配的規(guī)律;研究電功率和發(fā)生于電路元件中的能量轉(zhuǎn)化;尋求解決某些特殊電路的特定有效方法;討論電路的穩(wěn)定性、靈敏度和平衡條件.決定直流電路電壓分配和電流分配規(guī)律的兩條基本規(guī)律:(公式3.29)電阻&電源與
關(guān)系式
放電
充電
72▲串聯(lián)電路中高阻起主要作用圖3.22(a)電阻串聯(lián)(b)串聯(lián)電路中高阻起主要作用一例如圖(a),若干電阻元件首尾相接而處于一條支路,稱此種聯(lián)接方式為串聯(lián);串聯(lián)電路中,流經(jīng)各個(gè)元件的電流
是相等的.再結(jié)合歐姆定律和電壓線性疊加關(guān)系,便可得到串聯(lián)電路中關(guān)于電壓、電流的全部公式如下:(公式3.30)73在串聯(lián)電路中,高阻起主要作用.如圖(b),設(shè)
,可調(diào)低阻
,電源
,忽略其內(nèi)阻.則電流,:于是,當(dāng)
,
;當(dāng)
,
;當(dāng)
,.即,低阻兩端電壓
與低阻
值近似成正比,這意味著此電路成為一準(zhǔn)恒流電路,其電流
值主要由高阻
決定,低阻負(fù)載
的變化幾乎不影響這路電流.這種近似的快速估算方法,在實(shí)驗(yàn)工作中很有實(shí)用價(jià)值.對(duì)于本題這估算的誤差約為2%.74▲并聯(lián)電路中低阻起主要作用圖3.23(a)電阻并聯(lián)(b)并聯(lián)電路中低阻起主要作用一例如圖(a),若干電阻各自的一端聯(lián)結(jié),各自的另一端也聯(lián)結(jié),稱此種聯(lián)結(jié)方式為電阻的并聯(lián);在并聯(lián)電路中,跨于各電阻兩端的電壓是相等的.結(jié)合歐姆定律和電流線性疊加關(guān)系,便可得到并聯(lián)電路中關(guān)于電壓、電流的全部公式如下:(公式3.31)75在并聯(lián)電路中,低阻起主要作用.如圖(b),設(shè)
,可調(diào)高阻
,兩者并聯(lián)且與
串聯(lián),電源.則分配于并聯(lián)電阻兩端的電壓為:于是,當(dāng)
,;當(dāng),;當(dāng)
,即,高阻一路電流
與高阻
值近似成反比,這意味著此電路
間成為一準(zhǔn)恒壓電路,其分配到的電壓
值主要由低阻
值決定,高阻負(fù)載
的變化幾乎不影響這段電壓.這種近似的快速估算方法在實(shí)驗(yàn)工作現(xiàn)場(chǎng)很有實(shí)用價(jià)值.對(duì)于本題這估算的誤差約為2%.串聯(lián)電路和并聯(lián)電路及其組合電路,都?xì)w結(jié)為一類簡(jiǎn)單電路,它們是常見(jiàn)的且應(yīng)用十分廣泛的電路,串聯(lián)、并聯(lián)電路中電壓電流分配規(guī)律的典型應(yīng)用:可調(diào)分壓電路、可調(diào)制流電路、利用串聯(lián)分壓以擴(kuò)大電流計(jì)的電壓量程而成為伏特表、利用并聯(lián)分流以擴(kuò)大電流計(jì)的電流量程而成為安培表、伏安法測(cè)電阻及外接或內(nèi)接的選擇.7677▲直流電橋圖3.24直流電橋及其平衡條件直流電橋有四臂,其電阻分別為
和;在兩個(gè)支路的中點(diǎn)之間,跨接一個(gè)靈敏電流計(jì)作為示零器,這一段稱為橋路,如圖3.22所示.一般情況下,橋路電流
不為零,此時(shí)全電橋就不是一個(gè)簡(jiǎn)單電路,不能將它看作串聯(lián)或并聯(lián)及其組合,稱此時(shí)該電橋處于非平衡狀態(tài).當(dāng)橋路電流
為零,電橋達(dá)到平衡.為求出電橋平衡條件,不妨先斷開(kāi)橋路,讓
兩點(diǎn)脫接,試看其電壓
在何條件下等于零;如是,再讓
聯(lián)接上,此時(shí)橋路電流
必定為零.78采用一種謂之“順序數(shù)落電壓”的方法,表達(dá)電壓:
令,得:即或公式(3.32)(3.32)式為電橋平衡條件——對(duì)應(yīng)臂電阻之比值相等.
基于此平衡條件,直流電橋可用于精測(cè)電阻.比如,電阻
為一待測(cè)電阻
;當(dāng)電橋工作時(shí),一般
不為零,爾后調(diào)節(jié)另一臂電阻
,直至靈敏電流計(jì)示零.于是,得公式(3.32’)直流電橋是一種基本的電磁測(cè)量?jī)x表,它可以精測(cè)電阻以及其它影響電阻的物理效應(yīng).79▲補(bǔ)償電路電勢(shì)差計(jì)基于補(bǔ)償電路的電勢(shì)差計(jì)原理圖,如圖所示:
一、上半部分由工作電源
、可調(diào)電阻
和一長(zhǎng)段
電阻構(gòu)成閉合回路,提供一工作電流
,沿
段其電勢(shì)逐點(diǎn)降落;
二、下半部分,通過(guò)雙向開(kāi)關(guān)
串接待測(cè)電源
或標(biāo)準(zhǔn)電池
,再接上靈敏電流計(jì)作為示零器,以檢測(cè)下支路電流
是否為零.設(shè)計(jì)思想:如果下支路電源
被導(dǎo)線取代,則在
電勢(shì)差驅(qū)動(dòng)下,有下支路電流
自
;如果上半部分電源被導(dǎo)線取代,則在
作用下,有反向電流
自
;那么,在
,
共同作用下,在這下支路就有兩股電流對(duì)沖,也就有可能導(dǎo)致
為零.此乃補(bǔ)償電路之由來(lái).補(bǔ)償電路是對(duì)沖電路,惟有,的正極或負(fù)極如此對(duì)應(yīng)安排(同極相對(duì)),才可能出現(xiàn)對(duì)沖效果.圖3.24電勢(shì)差計(jì)原理圖80當(dāng)
,補(bǔ)償電路達(dá)到平衡.求平衡條件,斷開(kāi)下支路,讓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆安徽省淮北市相山區(qū)一中高三數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析
- 2025屆廣西崇左市高二上生物期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 福建省福州市八縣一中聯(lián)考2025屆語(yǔ)文高三上期末統(tǒng)考試題含解析
- 2025屆遼寧省遼陽(yáng)市生物高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2025屆江蘇省南京市示范名校生物高一第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析
- 2025屆江西省贛州市于都二中高一生物第一學(xué)期期末檢測(cè)試題含解析
- 2025屆湖南省嘉禾一中、臨武一中生物高三上期末質(zhì)量檢測(cè)模擬試題含解析
- 二手房東的租房合同2024年
- 2024年一般居間合同
- 2024年鍍鋅風(fēng)管設(shè)備購(gòu)銷合同范本
- 職業(yè)技能考評(píng)員培訓(xùn)
- 當(dāng)前臺(tái)海局勢(shì)分析課件
- JavaScript-基礎(chǔ)階段測(cè)筆試試題(含答案)
- 成長(zhǎng)賽道-模板參考
- 2024中國(guó)傳媒產(chǎn)業(yè)
- 施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)規(guī)范JGJ46-2005
- 圖解2023《鑄牢中華民族共同體意識(shí)》課件
- 2024年麻疹ppt課件完整版x
- 裝飾公司企業(yè)策劃及發(fā)展規(guī)劃
- 別睡 這里有蛇 一個(gè)語(yǔ)言學(xué)家和人類學(xué)家在亞馬孫叢林深處
- 兒科護(hù)理學(xué)講課課件
評(píng)論
0/150
提交評(píng)論