微積分-7.2多元函數(shù)基本概念_第1頁
微積分-7.2多元函數(shù)基本概念_第2頁
微積分-7.2多元函數(shù)基本概念_第3頁
微積分-7.2多元函數(shù)基本概念_第4頁
微積分-7.2多元函數(shù)基本概念_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、n維空間n維空間:表示為:一般地,設(shè)n為一個(gè)取定的正整數(shù),n元有序?qū)崝?shù)組的全體所構(gòu)成的集合.12:56:2417.2多元函數(shù)的基本概念n維空間中的點(diǎn):n元有序數(shù)組其中,數(shù)稱為該點(diǎn)的第i個(gè)坐標(biāo).n維空間中兩點(diǎn)間的距離:

注:當(dāng)n=1,2,3時(shí),上式即是數(shù)軸、平面及空間

兩點(diǎn)間的距離

.其中,點(diǎn)為和12:56:242一、n維空間

(或在學(xué)院主頁快速通道中選擇“網(wǎng)絡(luò)課程”)網(wǎng)絡(luò)教學(xué)平臺(tái)課程指導(dǎo)、教學(xué)課件、課后練習(xí)、評(píng)價(jià)測(cè)驗(yàn)論壇、作業(yè)等互動(dòng)板塊

密碼:123456jx47.2多元函數(shù)的基本概念12:56:24曲面平面二次曲面一般方程空間直角坐標(biāo)系空間解析幾何復(fù)習(xí)12:56:24球面柱面橢球面旋轉(zhuǎn)拋物面圓錐面雙曲拋物面67.2多元函數(shù)的基本概念12:56:24

返回

7.2多元函數(shù)的基本概念12:56:247

一、多元函數(shù)的基本概念

二、多元函數(shù)的極限

三、多元函數(shù)的連續(xù)性目的要求

1.了解平面區(qū)域、點(diǎn)的鄰域、開區(qū)域與閉區(qū)域等概念

2.理解多元函數(shù)的概念,會(huì)求二元函數(shù)的定義域重點(diǎn)1.二元函數(shù)的概念2.二元函數(shù)的連續(xù)性的概念

3.了解二元函數(shù)的極限與連續(xù)性的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)7.2多元函數(shù)的基本概念12:56:248

在一元函數(shù)的微積分中,所討論的對(duì)象都是一元函數(shù)y=f(x),即函數(shù)只依賴于一個(gè)自變量。

在數(shù)學(xué)上,這種由多個(gè)因素才能確定的變量,就是多元函數(shù)。

但在很多實(shí)際問題中,往往牽涉到多方面的因素,反映到數(shù)學(xué)上,就是一個(gè)變量依賴于多個(gè)變量的情形。12:56:2497.2多元函數(shù)的基本概念

一元函數(shù)的定義域是在數(shù)軸上討論,一般是一個(gè)區(qū)間(開區(qū)間、閉區(qū)間、半開半閉區(qū)間)。平面上進(jìn)行討論,二元函數(shù)z=f(x,y)的定義域在幾何上表示一個(gè)平面區(qū)域。量多了一個(gè),它的定義域很自然地要擴(kuò)充到但是對(duì)于二元函數(shù)而言,由于自變二、平面區(qū)域12:56:24107.2多元函數(shù)的基本概念(不包含圓周),為半徑的圓的內(nèi)部d為一正數(shù),d1、鄰域(一)平面區(qū)域二、平面區(qū)域去心鄰域,稱為點(diǎn)鄰域,(neighborhood)12:56:2411E的邊界。2、區(qū)域(region)(boundary)12:56:2412例:2、區(qū)域(region)12:56:2413

如果點(diǎn)集E內(nèi)任意兩點(diǎn)都能用全屬于E的折線或曲線連接起來,則稱E為連通的.

連通的開集稱為開區(qū)域,簡稱區(qū)域.(5)連通:(6)區(qū)域:例如,例如,區(qū)域及其它的邊界所成的集合稱為閉區(qū)域.2、區(qū)域(region)12:56:2414例例為無界開區(qū)域.區(qū)域區(qū)域(7)有界與無界區(qū)域:否則稱E為無界區(qū)域.為有界閉區(qū)域.2、區(qū)域(region)12:56:2415注:n維空間中鄰域、區(qū)域等概念內(nèi)點(diǎn)、邊界點(diǎn)、區(qū)域等概念也可定義.鄰域:2、區(qū)域(region)12:56:2416

導(dǎo)言:多元函數(shù)是多元函數(shù)微積分學(xué)研究的對(duì)象.同一元函數(shù)類似對(duì)于多元函數(shù)也有極限、連續(xù)等基本概念.三、多元函數(shù)的概念在多元函數(shù)中的推廣,它與一元函數(shù)相關(guān)內(nèi)容類似且密切相關(guān),在這部分內(nèi)容的學(xué)習(xí)中應(yīng)注意與一元函數(shù)的對(duì)比.在研究方法上把握一般與特殊之間辯證關(guān)系.這些內(nèi)容作為一元函數(shù)12:56:24177.2

多元函數(shù)的基本概念矩形面積S與長x,寬y之間關(guān)系為其中長x和寬y是兩個(gè)獨(dú)立的變量,

例2著名的生產(chǎn)函數(shù)為,這里為常數(shù),S=xy(x>0,y>0)例1矩形面積S

有惟一確定值對(duì)應(yīng).當(dāng)x,y

的值取定后,內(nèi),在它們變化范圍Q就

有惟一確定的值相對(duì)應(yīng).值取定后,當(dāng)K,L的Q是一個(gè)依賴于K和L的變化而變化的量.Q表示產(chǎn)量,分別表示投入的勞動(dòng)力數(shù)量和資本數(shù)量,在西方經(jīng)濟(jì)學(xué)中,三、多元函數(shù)的概念12:56:24187.2多元函數(shù)的基本概念其中稱為自變量,設(shè)D為中的一個(gè)非空點(diǎn)集,zDyxzf記為實(shí)數(shù)z的取值范圍稱為值域,記為的變化范圍D稱為函數(shù)的定義域,量,z稱為因變又記為記為f:D→R,二元函數(shù),則稱映射f為定義在D上的一確定的實(shí)數(shù)z與之對(duì)應(yīng),都有惟使得對(duì)于D中每一個(gè)有序?qū)崝?shù)對(duì)射f,若有一個(gè)映1.定義三.多元函數(shù)的概念12:56:2419類似地可定義三元及三元以上函數(shù).定義域D(f)、對(duì)應(yīng)法則f函數(shù)的表示法:(1)二元顯函數(shù)z=f(x,y)(2)二元隱函數(shù)F(x,y,z)=0確定函數(shù)的兩要素:多元函數(shù).三.多元函數(shù)的概念12:56:2420

2.二元函數(shù)的定義域

當(dāng)用某個(gè)解析式表達(dá)二元函數(shù)時(shí),凡是使解析式有意義的自變量所組成的平面點(diǎn)集為該二元函數(shù)的定義域,例1解所以函數(shù)的定義域?yàn)閤y二元函數(shù)的定義域通常為平面區(qū)域.要使函數(shù)有意義須滿足有界閉區(qū)域三.多元函數(shù)的概念(自然定義域)12:56:2421例2解函數(shù)的定義域?yàn)橐购瘮?shù)有意義須滿足無界開集

2.二元函數(shù)的定義域12:56:2422例3解要使函數(shù)有意義,必須故所求定義域?yàn)橛薪玳]區(qū)域

2.二元函數(shù)的定義域12:56:2423Solution.Solution.例4例5換元法12:56:2424

3.二元函數(shù)的幾何圖形

設(shè)函數(shù)z=f(x,y)的定義域?yàn)镈.平面上的投影.而定義域D正是這曲面在Oxy該幾何圖形通常是一張曲面.這個(gè)點(diǎn)集稱為二元函數(shù)的圖形.得到空間點(diǎn)集D上的一切點(diǎn)時(shí),當(dāng)(x,y)

取遍確定空間一點(diǎn)這樣,就對(duì)應(yīng)的函數(shù)值為點(diǎn)對(duì)于任意取定的D一元函數(shù)表示

x

y平面上的一條曲線y=f(x)12:56:2425例2例1

3.二元函數(shù)的幾何圖形12:56:2426例4圖形如右圖.例3如右圖,為球面.單值分支:

3.二元函數(shù)的幾何圖形12:56:24274.多元函數(shù)的定義一個(gè)自變量.兩個(gè)自變量.三個(gè)自變量.n個(gè)自變量.n元函數(shù)在幾何上表示n+1維空間上的一般曲面.三.多元函數(shù)的概念12:56:2428注意

(1)

多元函數(shù)也有單值函數(shù)和多值函數(shù),如在討論過程中通常將其拆成幾個(gè)單值函數(shù)后再分別加以討論.(2)

多元函數(shù)也有分段函數(shù),如(3)點(diǎn)函數(shù)u=f(P)能表示所有的函數(shù).(4)函數(shù)有加減乘除數(shù)乘及復(fù)合運(yùn)算(略)三.多元函數(shù)的概念12:56:2429

(5)一元函數(shù)的單調(diào)性、奇偶性、周期性等性質(zhì)的定義在多元函數(shù)中不再適用,但有界性的定義仍然適用.三.多元函數(shù)的概念12:56:2430(2)

多元函數(shù)也有分段函數(shù),如(3)點(diǎn)函數(shù)u=f(P)能表示所有的函數(shù).(4)函數(shù)有加減乘除數(shù)乘及復(fù)合運(yùn)算(略)四.多元函數(shù)的極限

設(shè)函數(shù)z=f(x,y)在點(diǎn)的某一去心方式趨于定點(diǎn)

時(shí),或記作的極限,則稱A為函數(shù)z=f(x,y)常數(shù)

A,

函數(shù)值f(x,y)

趨于一個(gè)確定如果動(dòng)點(diǎn)

P(x,y)

在該鄰域內(nèi)以任意鄰域內(nèi)有定義,1.定義(一)二元函數(shù)的極限(二重極限)12:56:2431指當(dāng)P(x,y)以任意方式與方向趨于定點(diǎn)P0(x0,y0),二元函數(shù)極限的說明:

(2)對(duì)于二元函數(shù)極限的不存在,以不同路徑趨于點(diǎn)時(shí),

在某一路徑上點(diǎn)P(x,y)

趨于點(diǎn)的極限不存在,則可以斷定函數(shù)在點(diǎn)的極限不存在.特征.即極限趨近方式具有任意性于A.

函數(shù)都無限接近(1)對(duì)于二元函數(shù)極限的存在是或函數(shù)趨于不同的值;則有若當(dāng)點(diǎn)P(x,y)(兩種路徑)四.多元函數(shù)的極限12:56:2432

例1考察函數(shù)在處的極限是否存在.

xy

-1.0-0.5-0.200.20.51.0-1.00.000.600.921.000.920.600.00-0.5-0.600.000.721.000.720.00-0.60-0.2-0.92-0.720.001.000.00-0.72-0.920-1.00-1.00-1.00-1.00-1.00-1.000.2-0.92-0.720.001.000.00-0.72-0.920.5-0.600.000.721.000.720.00-0.601.00.000.600.921.000.920.600.00做出函數(shù)在點(diǎn)附近的函數(shù)值表,如下函數(shù)在處的極限不存在.四.多元函數(shù)的極限

12:56:2433

例1證明函數(shù)在處的極限不存在.讓沿直線而趨于,它將隨k的不同而具有不同的值.極限不存在.證則有因此,四.多元函數(shù)的極限12:56:2434例2討論函數(shù)解

當(dāng)P(x,y)沿x

軸趨于(0,0)時(shí),

當(dāng)P(x,y)沿y軸趨于(0,0)時(shí),當(dāng)(x,y)→(0,0)時(shí)的極限。三.多元函數(shù)的極限12:56:2435當(dāng)P(x,y)沿

y=kx()趨于(0,0)時(shí),.當(dāng)k取不同值時(shí),取不同值,三.多元函數(shù)的極限12:56:2436確定極限不存在的方法:

(2)找兩種不同趨近方式,此時(shí)也可斷言),(yxf在點(diǎn)若極限存在,但兩者不相等,例3證明不存在.處極限不存在.12:56:2437例3證明不存在.證取其值隨k的不同而變化,故極限不存在.確定極限不存在的方法:12:56:2438不存在.觀察播放確定極限不存在的方法:12:56:24392.二元函數(shù)極限的計(jì)算

對(duì)于未定型,不再有L`Hospital法則,須化成確定型.

二元函數(shù)極限與一元函數(shù)極限具有類似的性質(zhì)與運(yùn)算法則.

計(jì)算二元函數(shù)的極限時(shí),常把二元函數(shù)極限轉(zhuǎn)化為一元函數(shù)極限問題,再利用四則運(yùn)算法則、夾逼定理、作變量代換、兩個(gè)重要極限、無窮小替換、對(duì)函數(shù)作恒等變換約去零因子、還可利用多元初等函數(shù)的連續(xù)性.

三.多元函數(shù)的極限12:56:2440解:例4

求2.二元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論