我的數(shù)學(xué)選講_第1頁(yè)
我的數(shù)學(xué)選講_第2頁(yè)
我的數(shù)學(xué)選講_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)史上的三次危機(jī)經(jīng)濟(jì)上有危機(jī),歷史上數(shù)學(xué)也有三次危機(jī)。在數(shù)學(xué)發(fā)展的過程中,人的認(rèn)識(shí)是不斷深化的.在各個(gè)歷史階段,人的認(rèn)識(shí)又有一定的局限性和相對(duì)性.當(dāng)一種“反?!爆F(xiàn)象用當(dāng)時(shí)的數(shù)學(xué)理論解釋不了,并且因此影響到數(shù)學(xué)的基礎(chǔ)時(shí),我們就說數(shù)學(xué)發(fā)生了危機(jī).許多人并不贊成使用危機(jī)這個(gè)詞,因?yàn)樗鼈儾]有阻礙數(shù)學(xué)的發(fā)展.在歷史上,數(shù)學(xué)曾發(fā)生過三次危機(jī).這三次危機(jī),從產(chǎn)生到消除,經(jīng)歷的時(shí)間各不相同,都極大地推動(dòng)了數(shù)學(xué)的發(fā)展,成為數(shù)學(xué)史上的佳話.第一次數(shù)學(xué)危機(jī)——無理數(shù)的產(chǎn)生第一次數(shù)學(xué)危機(jī)發(fā)生在公元前580?568年之間的古希臘,數(shù)學(xué)家畢達(dá)哥拉斯建立了畢達(dá)哥拉斯學(xué)派。這個(gè)學(xué)派集宗教、科學(xué)和哲學(xué)于一體,該學(xué)派人數(shù)固定,知識(shí)保密,所有發(fā)明創(chuàng)造都?xì)w于學(xué)派領(lǐng)袖。當(dāng)時(shí)人們對(duì)有理數(shù)的認(rèn)識(shí)還很有限,對(duì)于無理數(shù)的概念更是一無所知,畢達(dá)哥拉斯學(xué)派所說的數(shù),原來是指整數(shù),他們不把分?jǐn)?shù)看成一種數(shù),而僅看作兩個(gè)整數(shù)之比,他們錯(cuò)誤地認(rèn)為,宇宙間的一切現(xiàn)象都?xì)w結(jié)為整數(shù)或整數(shù)之比。該學(xué)派的成員希伯索斯根據(jù)勾股定理(西方稱為畢達(dá)哥拉斯定理)通過邏輯推理發(fā)現(xiàn),邊長(zhǎng)為l的正方形的對(duì)角線長(zhǎng)度既不是整數(shù),也不是整數(shù)的比所能表示。希伯索斯的發(fā)現(xiàn)被認(rèn)為是“荒謬”和違反常識(shí)的事。它不僅嚴(yán)重地違背了畢達(dá)哥拉斯學(xué)派的信條,也沖擊了當(dāng)時(shí)希臘人的傳統(tǒng)見解。使當(dāng)時(shí)希臘數(shù)學(xué)家們深感不安,相傳希伯索斯因這一發(fā)現(xiàn)被投入海中淹死,這就是第一次數(shù)學(xué)危機(jī)。這場(chǎng)危機(jī)通過在幾何學(xué)中引進(jìn)不可通約量概念而得到解決。兩個(gè)幾何線段,如果存在一個(gè)第三線段能同時(shí)量盡它們,就稱這兩個(gè)線段是可通約的,否則稱為不可通約的。正方形的一邊與對(duì)角線,就不存在能同時(shí)量盡它們的第三線段,因此它們是不可通約的。很顯然,只要承認(rèn)不可通約量的存在使幾何量不再受整數(shù)的限制,所謂的數(shù)學(xué)危機(jī)也就不復(fù)存在了。不可通約量的研究開始于公元前4世紀(jì)的歐多克斯,其成果被歐幾里得所吸收,部分被收人他的《幾何原本》中。第一次數(shù)學(xué)危機(jī)對(duì)古希臘的數(shù)學(xué)觀點(diǎn)有極大沖擊。這表明,幾何學(xué)的某些真理與算術(shù)無關(guān),幾何量不能完全由整數(shù)及其比來表示,反之卻可以由幾何量來表示出來,整數(shù)的權(quán)威地位開始動(dòng)搖,而幾何學(xué)的身份升高了。第一次數(shù)學(xué)危機(jī)持續(xù)了兩千多年.十九世紀(jì),數(shù)學(xué)家哈密頓(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷爾(Borel)、康托爾(Cantor)和維爾斯特拉斯(Weietstrass)等正式研究了無理數(shù),給出了無理數(shù)的嚴(yán)格定義,提出了一個(gè)含有有理數(shù)和無理數(shù)的新的數(shù)類———實(shí)數(shù),并建立了完整的實(shí)數(shù)理論.這樣,就完全消除了第一次數(shù)學(xué)危機(jī).第二次數(shù)學(xué)危機(jī)——對(duì)無限的理解第二次數(shù)學(xué)危機(jī)發(fā)生在十七世紀(jì)。十七世紀(jì)微積分誕生后,由于推敲微積分的理論基礎(chǔ)問題,數(shù)學(xué)界出現(xiàn)混亂局面,即第二次數(shù)學(xué)危機(jī)。微積分的形成給數(shù)學(xué)界帶來革命性變化,在各個(gè)科學(xué)領(lǐng)域得到廣泛應(yīng)用,但微積分在理論上存在矛盾的地方。無窮小量是微積分的基礎(chǔ)概念之一。微積分的主要?jiǎng)?chuàng)始人牛頓在一些典型的推導(dǎo)過程中,第一步用了無窮小量作分母進(jìn)行除法,當(dāng)然無窮小量不能為零;第二步牛頓又把無窮小量看作零,去掉那些包含它的項(xiàng),從而得到所要的公式,在力學(xué)和幾何學(xué)的應(yīng)用證明了這些公式是正確的,但它的數(shù)學(xué)推導(dǎo)過程卻在邏輯上自相矛盾。焦點(diǎn)是:無窮小量是零還是非零?如果是零,怎么能用它做除數(shù)?如果不是零,又怎么能把包含著無窮小量的那些項(xiàng)去掉呢?直到19世紀(jì),柯西詳細(xì)而有系統(tǒng)地發(fā)展了極限理論??挛髡J(rèn)為把無窮小量作為確定的量,即使是零,都說不過去,它會(huì)與極限的定義發(fā)生矛盾。無窮小量應(yīng)該是要怎樣小就怎樣小的量,因此本質(zhì)上它是變量,而且是以零為極限的量,至此柯西澄清了前人的無窮小的概念,而且把無窮小量從形而上學(xué)的束縛中解放出來,第二次數(shù)學(xué)危機(jī)基本解決。1734年,英國(guó)哲學(xué)家、大主教貝克萊發(fā)表《分析學(xué)家或者向一個(gè)不信正教數(shù)學(xué)家的進(jìn)言》,矛頭指向微積分的基礎(chǔ)--無窮小的問題,提出了所謂貝克萊悖論。他指出:〃牛頓在求xn的導(dǎo)數(shù)時(shí),采取了先給x以增量0,應(yīng)用二項(xiàng)式(x+O)n,從中減去xn以求得增量,并除以0以求出xn的增量與x的增量之比,然后又讓0消逝,這樣得出增量的最終比。這里牛頓做了違反矛盾律的手續(xù)一先設(shè)x有增量,又令增量為零,也即假設(shè)x沒有增量。〃他認(rèn)為無窮小dx既等于零又不等于零,召之即來,揮之即去,這是荒謬,〃dx為逝去量的靈魂〃。無窮小量究竟是不是零?無窮小及其分析是否合理?由此而引起了數(shù)學(xué)界甚至哲學(xué)界長(zhǎng)達(dá)一個(gè)半世紀(jì)的爭(zhēng)論。導(dǎo)致了數(shù)學(xué)史上的第二次數(shù)學(xué)危機(jī)。18世紀(jì)的數(shù)學(xué)思想的確是不嚴(yán)密的,直觀的強(qiáng)調(diào)形式的計(jì)算而不管基礎(chǔ)的可靠。其中特別是:沒有清楚的無窮小概念,從而導(dǎo)數(shù)、微分、積分等概念也不清楚,無窮大概念不清楚,以及發(fā)散級(jí)數(shù)求和的任意性,符號(hào)的不嚴(yán)格使用,不考慮連續(xù)就進(jìn)行微分,不考慮導(dǎo)數(shù)及積分的存在性以及函數(shù)可否展成冪級(jí)數(shù)等等。直到19世紀(jì)20年代,一些數(shù)學(xué)家才比較關(guān)注于微積分的嚴(yán)格基礎(chǔ)。從波爾查諾、阿貝爾、柯西、狄里赫利等人的工作開始,到威爾斯特拉斯、戴德金和康托的工作結(jié)束,中間經(jīng)歷了半個(gè)多世紀(jì),基本上解決了矛盾,為數(shù)學(xué)分析奠定了嚴(yán)格的基礎(chǔ)。終于消除了貝克萊悖論,把微積分建立在堅(jiān)實(shí)的極限理論之上,從而結(jié)束了第二次數(shù)學(xué)危機(jī).第三次數(shù)學(xué)危機(jī)——數(shù)學(xué)的根基(羅素悖論)數(shù)學(xué)史上的第三次危機(jī),是由1897年的突然沖擊而出現(xiàn)的,到現(xiàn)在,從整體來看,還沒有解決到令人滿意的程度。這次危機(jī)是由于在康托的一般集合理論的邊緣發(fā)現(xiàn)悖論造成的。由于集合概念已經(jīng)滲透到眾多的數(shù)學(xué)分支,并且實(shí)際上集合論成了數(shù)學(xué)的基礎(chǔ),因此集合論中悖論的發(fā)現(xiàn)自然地引起了對(duì)數(shù)學(xué)的整個(gè)基本結(jié)構(gòu)的有效性的懷疑。1897年,福爾蒂揭示了集合論中的第一個(gè)悖論。兩年后,康托發(fā)現(xiàn)了很相似的悖論。1902年,羅素又發(fā)現(xiàn)了一個(gè)悖論,它除了涉及集合概念本身外不涉及別的概念。羅素悖論曾被以多種形式通俗化。其中最著名的是羅素于1919年給出的,它涉及到某村理發(fā)師的困境。理發(fā)師宣布了這樣一條原則:他給所有不給自己刮臉的人刮臉,并且,只給村里這樣的人刮臉。當(dāng)人們?cè)噲D回答下列疑問時(shí),就認(rèn)識(shí)到了這種情況的悖論性質(zhì):"理發(fā)師是否自己給自己刮臉?"如果他不給自己刮臉,那么他按原則就該為自己刮臉;如果他給自己刮臉,那么他就不符合他的原則。羅素悖論使整個(gè)數(shù)學(xué)大廈動(dòng)搖了。無怪乎弗雷格在收到羅素的信之后,在他剛要出版的《算術(shù)的基本法則》第2卷末尾寫道:〃一位科學(xué)家不會(huì)碰到比這更難堪的事情了,即在工作完成之時(shí),它的基礎(chǔ)垮掉了,當(dāng)本書等待印出的時(shí)候,羅素先生的一封信把我置于這種境地〃。于是終結(jié)了近12年的刻苦鉆研。德國(guó)數(shù)學(xué)家策梅羅(Zermelo,1871-1953)認(rèn)為:適當(dāng)?shù)墓眢w系可以限制集合的概念,從邏輯上保證集合的純粹性.經(jīng)策梅羅、費(fèi)蘭克爾(Frenkel)馮.諾伊曼等人的努力,形成了一個(gè)完整的集合論公理體系,稱為ZFC系統(tǒng).在ZFC系統(tǒng)中,“集合”和“屬于”是兩個(gè)不加定義的原始概念,另外還有十條公理.ZFC系統(tǒng)的建立,不僅消除了羅素悖論,而且消除了集合論中的其它悖論.第三次數(shù)學(xué)危機(jī)也隨之銷聲匿跡了縱觀三次數(shù)學(xué)危機(jī),每次都有一兩個(gè)典型的悖論作為代表.克服了這些悖論,也就推動(dòng)了數(shù)學(xué)的長(zhǎng)足發(fā)展.結(jié)束語(yǔ):經(jīng)歷過歷史上三次數(shù)學(xué)危機(jī)的數(shù)學(xué)界,是否從此就與數(shù)學(xué)危機(jī)“絕緣”了呢?不!對(duì)此,我國(guó)當(dāng)代著名數(shù)學(xué)家徐利治教授說了一段很有見地的話,他說:“由于人的認(rèn)識(shí)在各個(gè)歷史階段中的局限性和相對(duì)性,在人類認(rèn)識(shí)的各個(gè)歷史階段所形成的各個(gè)理論系統(tǒng)中,本來就具有產(chǎn)生悖論的可能性,但在人類認(rèn)識(shí)世界的深

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論