




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年黑龍江省七臺河市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
2.單位長度扭轉(zhuǎn)角θ與下列哪項無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
3.A.0或1B.0或-1C.0或2D.1或-1
4.
5.曲線y=x2+5x+4在點(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
6.
7.
8.A.等價無窮小
B.f(x)是比g(x)高階無窮小
C.f(x)是比g(x)低階無窮小
D.f(x)與g(x)是同階但非等價無窮小
9.設(shè)是正項級數(shù),且un<υn(n=1,2,…),則下列命題正確的是()
A.B.C.D.
10.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
11.
12.
13.
14.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
15.
16.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);417.當(dāng)a→0時,2x2+3x是x的().A.A.高階無窮小B.等價無窮小C.同階無窮小,但不是等價無窮小D.低階無窮小
18.
19.
20.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
二、填空題(20題)21.
22.
23.設(shè),則f'(x)=______.24.25.
26.微分方程y'=2的通解為__________。
27.設(shè),則y'=______。28.
29.設(shè)y=f(x)在點x0處可導(dǎo),且在點x0處取得極小值,則曲線y=f(x)在點(x0,f(x0))處的切線方程為________。
30.
31.32.設(shè)z=ln(x2+y),則dz=______.33.
34.曲線y=x3+2x+3的拐點坐標(biāo)是_______。
35.
36.
37.
38.
39.
40.三、計算題(20題)41.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.43.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
46.求微分方程y"-4y'+4y=e-2x的通解.
47.證明:48.
49.
50.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.將f(x)=e-2X展開為x的冪級數(shù).
52.
53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.54.55.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則56.57.求微分方程的通解.58.
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.65.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
66.求微分方程y"-4y'+4y=e-2x的通解。
67.求曲線y=ln(1+x2)的凹區(qū)間。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.x=f(x,y)由x2+y2+z2=1確定,求zx,zy。
六、解答題(0題)72.
參考答案
1.C本題考查的知識點為不定積分的性質(zhì).
可知應(yīng)選C.
2.A
3.A
4.C
5.C點(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(-1,0)處切線的斜率為3,所以選C.
6.B
7.B
8.D
9.B由正項級數(shù)的比較判別法可以得到,若小的級數(shù)發(fā)散,則大的級數(shù)必發(fā)散,故選B。
10.D
11.D
12.A
13.D
14.D本題考查的知識點為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時丟掉項而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項。
15.D
16.C
17.C本題考查的知識點為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時,2x3+3x是x的同階無窮小,但不是等價無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時無窮小盧與無窮小α的階的關(guān)系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.
18.D解析:
19.D解析:
20.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
21.1+2ln2
22.y=0
23.本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
24.本題考查的知識點為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
25.ln(1+x)本題考查的知識點為可變上限積分求導(dǎo).
26.y=2x+C27.本題考查的知識點為導(dǎo)數(shù)的運(yùn)算。
28.
本題考查的知識點為極限的運(yùn)算.
若利用極限公式
如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得
29.y=f(x0)y=f(x)在點x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。
30.
解析:31.x-arctanx+C;本題考查的知識點為不定積分的運(yùn)算.
32.本題考查的知識點為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
先求出如果兩個偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知
由題設(shè)z=ln(x2+y),令u=x2+y,可得
當(dāng)X2+y≠0時,為連續(xù)函數(shù),因此有
33.
34.(03)
35.22解析:
36.37.本題考查的知識點為重要極限公式。
38.
解析:
39.e
40.本題考查的知識點為兩個:參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%42.由二重積分物理意義知
43.
44.
列表:
說明
45.
46.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.由一階線性微分方程通解公式有
49.
50.
51.
52.
53.
54.
55.由等價無窮小量的定義可知
56.
57.
58.
則
59.函數(shù)的定義域為
注意
60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.本題考查的知識點為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影部分所示,
注這是常見的考試題型,考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泉州工程職業(yè)技術(shù)學(xué)院《辦公空間室內(nèi)設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 馬鞍山職業(yè)技術(shù)學(xué)院《新型光纖通信系統(tǒng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 信陽學(xué)院《中國傳統(tǒng)建筑設(shè)計研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢體育學(xué)院《軟件設(shè)計模式》2023-2024學(xué)年第二學(xué)期期末試卷
- 齊齊哈爾工程學(xué)院《電力拖動與運(yùn)動控制》2023-2024學(xué)年第二學(xué)期期末試卷
- 泰安2025年山東泰安市屬事業(yè)單位初級綜合類崗位招聘127人筆試歷年參考題庫附帶答案詳解-1
- 內(nèi)蒙古建筑職業(yè)技術(shù)學(xué)院《普通化學(xué)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東協(xié)和學(xué)院《文藝節(jié)目策劃與創(chuàng)作》2023-2024學(xué)年第二學(xué)期期末試卷
- 蕪湖職業(yè)技術(shù)學(xué)院《現(xiàn)代教育技術(shù)理論及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南2025年河南鄭州大學(xué)第一附屬醫(yī)院招聘博士302人筆試歷年參考題庫附帶答案詳解
- 工作室成員成長檔案模板(內(nèi)部版)課件
- (完整版)馬克思主義基本原理概論知識點
- 弱電系統(tǒng)巡查記錄表(辦公樓)
- 預(yù)防接種人員崗位培訓(xùn)習(xí)題(Ⅰ類培訓(xùn)練習(xí)題庫共385題)
- 現(xiàn)場經(jīng)濟(jì)簽證單范本
- 《網(wǎng)店運(yùn)營與管理》課件(完整版)
- 《跨境電商B2B操作實務(wù)》教學(xué)大綱
- 河口區(qū)自然資源
- 精益改善項目管理制度
- 2012數(shù)據(jù)結(jié)構(gòu)英文試卷A及答案
- 機(jī)翼結(jié)構(gòu)(課堂PPT)
評論
0/150
提交評論