版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
3.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較4.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小5.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
6.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
7.
8.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件9.A.A.
B.
C.
D.
10.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
11.
12.
13.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
14.
15.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時(shí)針方向B.30N·m,順時(shí)針方向C.60N·m,逆時(shí)針方向D.60N·m,順時(shí)針方向16.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C
17.
18.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
19.
20.
21.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
22.
23.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
24.績(jī)效評(píng)估的第一個(gè)步驟是()
A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見25.()A.A.
B.
C.
D.
26.
27.
28.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
29.
30.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)
B.c1y1(x)+y2(x)
C.y1(x)+y2(x)
D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).
31.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合
32.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
33.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)
B.(-1,1)
C.(0,-l)
D.(0,1)
34.
35.
A.
B.
C.
D.
36.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
37.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
38.
39.A.等價(jià)無窮小
B.f(x)是比g(x)高階無窮小
C.f(x)是比g(x)低階無窮小
D.f(x)與g(x)是同階但非等價(jià)無窮小
40.
41.
42.A.A.
B.
C.
D.
43.()。A.-2B.-1C.0D.244.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C45.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
46.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
47.
48.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)49.()。A.3B.2C.1D.050.
二、填空題(20題)51.
52.不定積分=______.53.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分
54.
55.曲線y=x3-3x+2的拐點(diǎn)是__________。
56.57.58.59.
60.
61.62.微分方程exy'=1的通解為______.
63.
64.
65.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.66.67.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
68.
69.
70.
三、計(jì)算題(20題)71.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.72.求微分方程的通解.73.求曲線在點(diǎn)(1,3)處的切線方程.74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
75.
76.77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.
82.證明:83.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
84.
85.求微分方程y"-4y'+4y=e-2x的通解.
86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.90.
四、解答題(10題)91.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。
92.93.
94.95.96.97.98.
99.
100.
五、高等數(shù)學(xué)(0題)101.y=ze-x在[0,2]上的最大值=__________,最小值=________。
六、解答題(0題)102.
參考答案
1.A
2.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
3.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
4.D本題考查的知識(shí)點(diǎn)為無窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。
5.A
6.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
7.A
8.D內(nèi)的概念,與f(x)在點(diǎn)x0處是否有定義無關(guān).
9.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
10.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
11.D解析:
12.C
13.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
14.C
15.D
16.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
17.C解析:
18.B
19.D
20.A
21.C
22.A解析:
23.D
24.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。
25.C
26.A
27.D
28.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
29.A解析:
30.D
31.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
32.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
33.C
34.C解析:
35.B
36.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
37.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
38.C解析:
39.D
40.B
41.D
42.D本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時(shí),
因此應(yīng)選D.
43.A
44.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。
45.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
46.C
47.B解析:
48.A
49.A
50.C
51.e2
52.
;本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
53.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
54.0
55.(02)
56.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
57.(-21)(-2,1)
58.2本題考查了定積分的知識(shí)點(diǎn)。59.e-1/2
60.3e3x3e3x
解析:
61.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
62.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
63.00解析:
64.y=f(0)65.[-1,1
66.67.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
68.
69.(12)
70.(-∞2)71.函數(shù)的定義域?yàn)?/p>
注意
72.73.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.
75.
76.
77.由二重積分物理意義知
78.
列表:
說明
79.
80.由等價(jià)無窮小量的定義可知
81.
則
82.
83.
84.
85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
86.
87.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教科版四年級(jí)下冊(cè)科學(xué)科學(xué)教案+教材分析
- 2018年Q1中國移動(dòng)互聯(lián)網(wǎng)行業(yè)發(fā)展分析報(bào)告
- 能源有限公司企業(yè)標(biāo)準(zhǔn):基本建設(shè)管理標(biāo)準(zhǔn)
- 修繕協(xié)議書(2篇)
- 公共關(guān)系咨詢合同(2篇)
- 酒店租賃協(xié)議
- 房屋場(chǎng)地租賃合同書模板
- 博覽會(huì)總贊助協(xié)議書
- 土方車租賃合同
- 2025年金屬壓力及大型容器合作協(xié)議書
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗(yàn)
- GB/T 1446-2005纖維增強(qiáng)塑料性能試驗(yàn)方法總則
- 透水混凝土工程檢驗(yàn)批質(zhì)量驗(yàn)收記錄表
- 2023年中荊投資控股集團(tuán)有限公司招聘筆試模擬試題及答案解析
- DPP-4抑制劑的臨床應(yīng)用及優(yōu)勢(shì)解析課件
- 《起重吊裝方案編制》課件
- 光伏扶貧項(xiàng)目可行性研究報(bào)告
- 鈑金沖壓件質(zhì)量要求
- 2022年高考全國甲卷語文試題評(píng)講課件55張
- 欠條(標(biāo)準(zhǔn)模版)
- 深圳京基·KKmall市場(chǎng)考察報(bào)告(45頁
評(píng)論
0/150
提交評(píng)論