2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年山東省濱州市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

3.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較4.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小5.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

6.方程z=x2+y2表示的二次曲面是().

A.球面

B.柱面

C.圓錐面

D.拋物面

7.

8.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件9.A.A.

B.

C.

D.

10.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

11.

12.

13.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

14.

15.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。

A.30N·m,逆時(shí)針方向B.30N·m,順時(shí)針方向C.60N·m,逆時(shí)針方向D.60N·m,順時(shí)針方向16.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

17.

18.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

19.

20.

21.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

22.

23.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確

24.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見25.()A.A.

B.

C.

D.

26.

27.

28.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

29.

30.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)

B.c1y1(x)+y2(x)

C.y1(x)+y2(x)

D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).

31.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合

32.下列命題中正確的為

A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0

B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)

C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)

D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0

33.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

34.

35.

A.

B.

C.

D.

36.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要

37.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

38.

39.A.等價(jià)無窮小

B.f(x)是比g(x)高階無窮小

C.f(x)是比g(x)低階無窮小

D.f(x)與g(x)是同階但非等價(jià)無窮小

40.

41.

42.A.A.

B.

C.

D.

43.()。A.-2B.-1C.0D.244.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C45.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.

B.

C.

D.

46.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0

B.f(xo)必定存在,但f(xo)不一定等于零

C.f(xo)可能不存在

D.f(xo)必定不存在

47.

48.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)49.()。A.3B.2C.1D.050.

二、填空題(20題)51.

52.不定積分=______.53.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分

54.

55.曲線y=x3-3x+2的拐點(diǎn)是__________。

56.57.58.59.

60.

61.62.微分方程exy'=1的通解為______.

63.

64.

65.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.66.67.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則

68.

69.

70.

三、計(jì)算題(20題)71.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.72.求微分方程的通解.73.求曲線在點(diǎn)(1,3)處的切線方程.74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

75.

76.77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.

82.證明:83.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

84.

85.求微分方程y"-4y'+4y=e-2x的通解.

86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.90.

四、解答題(10題)91.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。

92.93.

94.95.96.97.98.

99.

100.

五、高等數(shù)學(xué)(0題)101.y=ze-x在[0,2]上的最大值=__________,最小值=________。

六、解答題(0題)102.

參考答案

1.A

2.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

3.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。

4.D本題考查的知識(shí)點(diǎn)為無窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。

5.A

6.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.

7.A

8.D內(nèi)的概念,與f(x)在點(diǎn)x0處是否有定義無關(guān).

9.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

10.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

11.D解析:

12.C

13.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

14.C

15.D

16.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

17.C解析:

18.B

19.D

20.A

21.C

22.A解析:

23.D

24.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

25.C

26.A

27.D

28.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

29.A解析:

30.D

31.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

32.D解析:由極值的必要條件知D正確。

y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。

y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。

33.C

34.C解析:

35.B

36.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

37.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

38.C解析:

39.D

40.B

41.D

42.D本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時(shí),

因此應(yīng)選D.

43.A

44.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。

45.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。

46.C

47.B解析:

48.A

49.A

50.C

51.e2

52.

;本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.

53.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

54.0

55.(02)

56.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

57.(-21)(-2,1)

58.2本題考查了定積分的知識(shí)點(diǎn)。59.e-1/2

60.3e3x3e3x

解析:

61.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

62.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.

63.00解析:

64.y=f(0)65.[-1,1

66.67.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此

68.

69.(12)

70.(-∞2)71.函數(shù)的定義域?yàn)?/p>

注意

72.73.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

74.

75.

76.

77.由二重積分物理意義知

78.

列表:

說明

79.

80.由等價(jià)無窮小量的定義可知

81.

82.

83.

84.

85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

86.

87.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論