




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
會計(jì)學(xué)1單方程計(jì)量經(jīng)濟(jì)學(xué)模型單方程計(jì)量經(jīng)濟(jì)學(xué)模型第二章經(jīng)典單方程計(jì)量經(jīng)濟(jì)學(xué)模型:
一元線性回歸模型
回歸分析概述一元線性回歸模型的參數(shù)估計(jì)一元線性回歸模型檢驗(yàn)一元線性回歸模型預(yù)測實(shí)例第1頁/共21頁§2.1回歸分析概述一、變量間的關(guān)系及回歸分析的基本概念
二、總體回歸函數(shù)三、隨機(jī)擾動(dòng)項(xiàng)四、樣本回歸函數(shù)(SRF)第2頁/共21頁§2.1回歸分析概述
(1)確定性關(guān)系或函數(shù)關(guān)系:研究的是確定現(xiàn)象非隨機(jī)變量間的關(guān)系。(2)統(tǒng)計(jì)依賴或相關(guān)關(guān)系:研究的是非確定現(xiàn)象隨機(jī)變量間的關(guān)系。一、變量間的關(guān)系及回歸分析的基本概念
1、變量間的關(guān)系經(jīng)濟(jì)變量之間的關(guān)系,大體可分為兩類:第3頁/共21頁對變量間統(tǒng)計(jì)依賴關(guān)系的考察主要是通過相關(guān)分析(correlationanalysis)或回歸分析(regressionanalysis)來完成的:例如:
函數(shù)關(guān)系:統(tǒng)計(jì)依賴關(guān)系/統(tǒng)計(jì)相關(guān)關(guān)系:第4頁/共21頁
①不線性相關(guān)并不意味著不相關(guān);
②有相關(guān)關(guān)系并不意味著一定有因果關(guān)系;③回歸分析/相關(guān)分析研究一個(gè)變量對另一個(gè)(些)變量的統(tǒng)計(jì)依賴關(guān)系,但它們并不意味著一定有因果關(guān)系。
④相關(guān)分析對稱地對待任何(兩個(gè))變量,兩個(gè)變量都被看作是隨機(jī)的。回歸分析對變量的處理方法存在不對稱性,即區(qū)分應(yīng)變量(被解釋變量)和自變量(解釋變量):前者是隨機(jī)變量,后者不是?!⒁猓旱?頁/共21頁
回歸分析(regressionanalysis)是研究一個(gè)變量關(guān)于另一個(gè)(些)變量的具體依賴關(guān)系的計(jì)算方法和理論。
其用意:在于通過后者的已知或設(shè)定值,去估計(jì)和(或)預(yù)測前者的(總體)均值。這里:前一個(gè)變量被稱為被解釋變量(ExplainedVariable)或應(yīng)變量(DependentVariable),后一個(gè)(些)變量被稱為解釋變量(ExplanatoryVariable)或自變量(IndependentVariable)。2、回歸分析的基本概念
回歸分析構(gòu)成計(jì)量經(jīng)濟(jì)學(xué)的方法論基礎(chǔ),其主要內(nèi)容包括:
(1)根據(jù)樣本觀察值對經(jīng)濟(jì)計(jì)量模型參數(shù)進(jìn)行估計(jì),求得回歸方程;(2)對回歸方程、參數(shù)估計(jì)值進(jìn)行顯著性檢驗(yàn);(3)利用回歸方程進(jìn)行分析、評價(jià)及預(yù)測。第6頁/共21頁
由于變量間關(guān)系的隨機(jī)性,回歸分析關(guān)心的是根據(jù)解釋變量的已知或給定值,考察被解釋變量的總體均值,即當(dāng)解釋變量取某個(gè)確定值時(shí),與之統(tǒng)計(jì)相關(guān)的被解釋變量所有可能出現(xiàn)的對應(yīng)值的平均值。
例2.1:一個(gè)假想的社區(qū)有100戶家庭組成,要研究該社區(qū)每月家庭消費(fèi)支出Y與每月家庭可支配收入X的關(guān)系。即如果知道了家庭的月收入,能否預(yù)測該社區(qū)家庭的平均月消費(fèi)支出水平。
二、總體回歸函數(shù)
為達(dá)到此目的,將該100戶家庭劃分為組內(nèi)收入差不多的10組,以分析每一收入組的家庭消費(fèi)支出。第7頁/共21頁第8頁/共21頁
(1)由于不確定因素的影響,對同一收入水平X,不同家庭的消費(fèi)支出不完全相同;(2)但由于調(diào)查的完備性,給定收入水平X的消費(fèi)支出Y的分布是確定的,即以X的給定值為條件的Y的條件分布(Conditionaldistribution)是已知的,如:P(Y=561|X=800)=1/4。因此,給定收入X的值Xi,可得消費(fèi)支出Y的條件均值(conditionalmean)或條件期望(conditionalexpectation):
E(Y|X=Xi)該例中:E(Y|X=800)=561分析:第9頁/共21頁
描出散點(diǎn)圖發(fā)現(xiàn):隨著收入的增加,消費(fèi)“平均地說”也在增加,且Y的條件均值均落在一根正斜率的直線上。這條直線稱為總體回歸線。05001000150020002500300035005001000150020002500300035004000每月可支配收入X(元)每月消費(fèi)支出Y(元)
第10頁/共21頁概念:
在給定解釋變量Xi條件下被解釋變量Yi的期望軌跡稱為總體回歸線(populationregressionline),或更一般地稱為總體回歸曲線(populationregressioncurve)。稱為(雙變量)總體回歸函數(shù)(populationregressionfunction,PRF)。
相應(yīng)的函數(shù):第11頁/共21頁
回歸函數(shù)(PRF)說明被解釋變量Y的平均狀態(tài)(總體條件期望)隨解釋變量X變化的規(guī)律。含義:
函數(shù)形式:可以是線性或非線性的。
例2.1中,將居民消費(fèi)支出看成是其可支配收入的線性函數(shù)時(shí):
為一線性函數(shù)。其中,0,1是未知參數(shù),稱為回歸系數(shù)(regressioncoefficients)。
。第12頁/共21頁
三、隨機(jī)擾動(dòng)項(xiàng)
總體回歸函數(shù)說明在給定的收入水平Xi下,該社區(qū)家庭平均的消費(fèi)支出水平。但對某一個(gè)別的家庭,其消費(fèi)支出可能與該平均水平有偏差。稱i為觀察值Yi圍繞它的期望值E(Y|Xi)的離差(deviation),是一個(gè)不可觀測的隨機(jī)變量,又稱為隨機(jī)干擾項(xiàng)(stochasticdisturbance)或隨機(jī)誤差項(xiàng)(stochasticerror)。記第13頁/共21頁例2.1中,個(gè)別家庭的消費(fèi)支出為:
(*)式稱為總體回歸函數(shù)(方程)PRF的隨機(jī)設(shè)定形式。表明被解釋變量除了受解釋變量的系統(tǒng)性影響外,還受其他因素的隨機(jī)性影響。
(1)該收入水平下所有家庭的平均消費(fèi)支出E(Y|Xi),稱為系統(tǒng)性(systematic)或確定性(deterministic)部分。(2)其他隨機(jī)或非確定性(nonsystematic)部分i。即,給定收入水平Xi,個(gè)別家庭的支出可表示為兩部分之和:(*)
由于方程中引入了隨機(jī)項(xiàng),成為計(jì)量經(jīng)濟(jì)學(xué)模型,因此也稱為總體回歸模型。第14頁/共21頁隨機(jī)誤差項(xiàng)主要包括下列因素的影響:1)在解釋變量中被忽略的因素的影響;2)變量觀測值的觀測誤差的影響;3)模型關(guān)系的設(shè)定誤差的影響;4)其它隨機(jī)因素的影響。產(chǎn)生并設(shè)計(jì)隨機(jī)誤差項(xiàng)的主要原因:1)理論的含糊性;2)數(shù)據(jù)的欠缺;3)節(jié)省原則。第15頁/共21頁
四、樣本回歸函數(shù)(SRF)
問題:能從一次抽樣中獲得總體的近似的信息嗎?如果可以,如何從抽樣中獲得總體的近似信息?
問:能否從該樣本估計(jì)總體回歸函數(shù)PRF?回答:能
例2.2:在例2.1的總體中有如下一個(gè)樣本,
總體的信息往往無法掌握,現(xiàn)實(shí)的情況只能是在一次觀測中得到總體的一個(gè)樣本。第16頁/共21頁核樣本的散點(diǎn)圖(scatterdiagram):
樣本散點(diǎn)圖近似于一條直線,畫一條直線以盡好地?cái)M合該散點(diǎn)圖,由于樣本取自總體,可以該線近似地代表總體回歸線。該線稱為樣本回歸線(sampleregressionlines)。
記樣本回歸線的函數(shù)形式為:稱為樣本回歸函數(shù)(sampleregressionfunction,SRF)。
第17頁/共21頁
這里將樣本回歸線看成總體回歸線的近似替代則
注意:第18頁/共21頁
樣本回歸函數(shù)的隨機(jī)形式/樣本回歸模型:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年育嬰師考試模擬考試過程試題及答案
- 2025年攀枝花攀西職業(yè)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年黑龍江交通職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年(2019-2024年)真題考點(diǎn)試卷含答案解析
- 九年級語文上冊 第三單元 9 故鄉(xiāng)教學(xué)設(shè)計(jì) (新版)新人教版
- 2025年青海交通職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年青島港灣職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 教育行業(yè)上半年工作匯報(bào)
- 專注于重點(diǎn)內(nèi)容2025公共營養(yǎng)師考試試題答案
- 2025年醫(yī)用基礎(chǔ)設(shè)備器具項(xiàng)目建議書
- 2024年系統(tǒng)規(guī)劃與管理師考試的跨界學(xué)習(xí)實(shí)踐試題及答案
- 存款保險(xiǎn)知識競賽
- 信息技術(shù)必修1數(shù)據(jù)與計(jì)算2.2《做出判斷的分支》教學(xué)設(shè)計(jì)
- 七年級生物上冊 3.2.1 種子的萌發(fā)說課稿1 (新版)新人教版
- 2025年臨床醫(yī)師定期考核必考復(fù)習(xí)題庫及答案(1000題)
- 保安指揮車輛標(biāo)準(zhǔn)手勢培訓(xùn)
- 【MOOC】醫(yī)學(xué)心理學(xué)-北京大學(xué) 中國大學(xué)慕課MOOC答案
- 中建塔式起重機(jī)安裝、拆除專項(xiàng)施工方案
- 《光明乳業(yè)公司企業(yè)應(yīng)收賬款管理現(xiàn)狀及優(yōu)化建議(10000字論文)》
- 剪映專業(yè)版教學(xué)課件
- 邀請招標(biāo)文件模板
- 金融投資項(xiàng)目立項(xiàng)管理制度
評論
0/150
提交評論