




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省黑河市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
2.
3.
4.
5.
6.A.A.
B.
C.
D.
7.A.A.4B.-4C.2D.-28.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
9.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
10.
11.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1
12.
13.
14.A.A.
B.
C.
D.
15.
16.A.等價(jià)無窮小
B.f(x)是比g(x)高階無窮小
C.f(x)是比g(x)低階無窮小
D.f(x)與g(x)是同階但非等價(jià)無窮小
17.設(shè)有直線
當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1
B.0
C.
D.一1
18.
A.
B.
C.
D.
19.A.A.0B.1/2C.1D.∞20.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C二、填空題(20題)21.22.23.
24.
25.冪級(jí)數(shù)的收斂半徑為________。
26.
27.
28.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.
29.30.y=x3-27x+2在[1,2]上的最大值為______.31.
32.
33.34.直線的方向向量為________。
35.
36.曲線f(x)=x/x+2的鉛直漸近線方程為__________。
37.設(shè),則y'=______。
38.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為__________.
39.40.三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
42.求微分方程的通解.43.
44.45.求曲線在點(diǎn)(1,3)處的切線方程.46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
50.將f(x)=e-2X展開為x的冪級(jí)數(shù).51.52.證明:53.
54.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
57.求微分方程y"-4y'+4y=e-2x的通解.
58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
59.
60.四、解答題(10題)61.求函數(shù)y=xex的極小值點(diǎn)與極小值。62.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.63.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.64.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.
65.
66.求z=x2+y2在條件x+y=1下的條件極值.67.68.69.求微分方程xy'-y=x2的通解.70.五、高等數(shù)學(xué)(0題)71.分析
在x=0處的可導(dǎo)性
六、解答題(0題)72.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。
參考答案
1.B由復(fù)合函數(shù)求導(dǎo)法則,可得
故選B.
2.A
3.B
4.D
5.B
6.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選A.
7.D
8.A由于
可知應(yīng)選A.
9.D
10.A解析:
11.C
12.B
13.C
14.A
15.D
16.D
17.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.
18.C
19.A
20.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
21.
22.
23.
24.25.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。
26.0
27.
28.1+1/x2
29.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
30.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
(1)求出f'(x).
(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.
(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).
y=x3-27x+2,
則y'=3x2-27=3(x-3)(x+3),
令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).
由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.
本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較
f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,
得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問題.在模擬試題中兩次出現(xiàn)這類問題,目的就是希望能引起考生的重視.
本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>
x=2為y的最小值點(diǎn),最小值為y|x=2=-44.
x=1為y的最大值點(diǎn),最大值為y|x=1=-24.
31.
本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
32.1/21/2解析:33.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,
34.直線l的方向向量為
35.3yx3y-13yx3y-1
解析:
36.x=-237.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
38.39.
40.
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
42.43.由一階線性微分方程通解公式有
44.
45.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.
47.
48.由二重積分物理意義知
49.
50.
51.
52.
53.
則
54.
55.
列表:
說明
56.由等價(jià)無窮小量的定義可知
57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
58.函數(shù)的定義域?yàn)?/p>
注意
59.
60.
61.
62.63.所給曲線圍成的平面圖形如圖1-3所示.
解法1利用定積分求平面圖形的面積.由于的解為x=1,y=2,可得
解法2利用二重積分求平面圖形面積.由于
的解為x=1,y=2,
求旋轉(zhuǎn)體體積與解法1同.本題考查的知識(shí)點(diǎn)有兩個(gè):利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
本題也可以利用二重積分求平面圖形的面積.64.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,則本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.
y=y(x)由方程F(x,Y)=0確定,求y'通常有兩種方法:
一是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y'的方程,從中解出y'.
二是利用隱函數(shù)求導(dǎo)公式其中F'x,F(xiàn)'y分別為F(x,y)=0中F(x,y)對(duì)第一個(gè)位置變?cè)钠珜?dǎo)數(shù)與對(duì)第二個(gè)位置變?cè)钠珜?dǎo)數(shù).
對(duì)于一些特殊情形,可以從F(x,y)=0中較易地解出y=y(x)時(shí),也可以先求出y=y(x),再直接求導(dǎo).
65.66.構(gòu)造拉格朗日函數(shù)
可解得唯一組解x=1/2,y=1/2.所給問題可以解釋為在直線x+y=1上求到原點(diǎn)的距離平方最大或最小的點(diǎn).由于實(shí)際上只能存在距離平方的最小值,不存在最大值,因此(1/2,1/2)為所給問題的極小值點(diǎn).極小值為
本題考查的知識(shí)點(diǎn)為二元函數(shù)的條件極值.
通常的求解方法是引入拉格朗日函數(shù),當(dāng)求出可能極值點(diǎn)之后,往往利用所給問題的實(shí)際意義或幾何意義判定其是否為極值點(diǎn).
67.68.本題考查的知識(shí)點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版海洋貨物運(yùn)輸保險(xiǎn)合同
- 二零二五房產(chǎn)抵押合同格式范文
- 環(huán)衛(wèi)掃地工合同范本
- 公司擔(dān)保個(gè)人借款合同二零二五年
- 租房 居間方 合同范本
- 養(yǎng)殖院轉(zhuǎn)讓合同范本
- 2025年山西工程職業(yè)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年山東商業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年宜春職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 胡華生活化話課程
- GB/T 20424-2025重有色金屬精礦產(chǎn)品中有害元素的限量規(guī)范
- 輸油管道安全培訓(xùn)
- 2025年海南重點(diǎn)項(xiàng)目-300萬只蛋雞全產(chǎn)業(yè)鏈項(xiàng)目可行性研究報(bào)告
- 2025年河南省高校畢業(yè)生“三支一扶”招募1100人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 關(guān)于“地舒單抗”治療骨質(zhì)疏松的認(rèn)識(shí)
- 2025年國(guó)家林業(yè)局西北林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院招聘4人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 現(xiàn)代護(hù)理管理新理念
- 新生兒高膽紅素血癥診斷和治療專家共識(shí)
- 《二維納米材料》課件
- 《疲勞的生理機(jī)制》課件
- 2025年江西省建材集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
評(píng)論
0/150
提交評(píng)論