高中數(shù)學(xué)古典概型3蘇教必修三_第1頁
高中數(shù)學(xué)古典概型3蘇教必修三_第2頁
高中數(shù)學(xué)古典概型3蘇教必修三_第3頁
高中數(shù)學(xué)古典概型3蘇教必修三_第4頁
高中數(shù)學(xué)古典概型3蘇教必修三_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

古典概型(3).知識回顧:1.從事件發(fā)生與否的角度可將事件分為哪幾類?2.概率是怎樣定義的?3、概率的性質(zhì):

必然事件、不可能事件、隨機(jī)事件0≤P(A)≤1;P(Ω)=1,P(φ)=0.即,(其中P(A)為事件A發(fā)生的概率)

一般地,如果隨機(jī)事件A在n次試驗(yàn)中發(fā)生了m次,當(dāng)試驗(yàn)的次數(shù)n很大時(shí),我們可以將事件A發(fā)生的頻率作為事件A發(fā)生的概率的近似值,.求古典概型的步驟:(1)判斷是否為等可能性事件;(2)計(jì)算所有基本事件的總結(jié)果數(shù)n.(3)計(jì)算事件A所包含的結(jié)果數(shù)m.(4)計(jì)算.例1(摸球問題):一個(gè)口袋內(nèi)裝有大小相同的5個(gè)紅球和3個(gè)黃球,從中一次摸出兩個(gè)球。⑷求摸出的兩個(gè)球一紅一黃的概率。⑴問共有多少個(gè)基本事件;⑵求摸出兩個(gè)球都是紅球的概率;⑶求摸出的兩個(gè)球都是黃球的概率;例題講解:.例1(摸球問題):一個(gè)口袋內(nèi)裝有大小相同的5個(gè)紅球和3個(gè)黃球,從中一次摸出兩個(gè)球。⑴問共有多少個(gè)基本事件;解:⑴分別對紅球編號為1、2、3、4、5號,對黃球編號6、7、8號,從中任取兩球,有如下等可能基本事件,枚舉如下:(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)(3,4)、(3,5)、(3,6)、(3,7)、(3,8)(4,5)、(4,6)、(4,7)、(4,8)(5,6)、(5,7)、(5,8)(6,7)、(6,8)(7,8)7654321共有28個(gè)等可能事件28.例1(摸球問題):一個(gè)口袋內(nèi)裝有大小相同的5個(gè)紅球和3個(gè)黃球,從中一次摸出兩個(gè)球。⑵求摸出兩個(gè)球都是紅球的概率;設(shè)“摸出兩個(gè)球都是紅球”為事件A則A中包含的基本事件有10個(gè),因此(5,6)、(5,7)、(5,8)(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)(3,4)、(3,5)、(3,6)、(3,7)、(3,8)(4,5)、(4,6)、(4,7)、(4,8)(6,7)、(6,8)(7,8).例1(摸球問題):一個(gè)口袋內(nèi)裝有大小相同的5個(gè)紅球和3個(gè)黃球,從中一次摸出兩個(gè)球。⑶求摸出的兩個(gè)球都是黃球的概率;設(shè)“摸出的兩個(gè)球都是黃球”為事件B,故

(5,6)、(5,7)、(5,8)(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)(3,4)、(3,5)、(3,6)、(3,7)、(3,8)(4,5)、(4,6)、(4,7)、(4,8)(6,7)、(6,8)(7,8)則事件B中包含的基本事件有3個(gè),.例1(摸球問題):一個(gè)口袋內(nèi)裝有大小相同的5個(gè)紅球和3個(gè)黃球,從中一次摸出兩個(gè)球。⑷求摸出的兩個(gè)球一紅一黃的概率。設(shè)“摸出的兩個(gè)球一紅一黃”為事件C,(5,6)、(5,7)、(5,8)(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)(3,4)、(3,5)、(3,6)、(3,7)、(3,8)(4,5)、(4,6)、(4,7)、(4,8)(6,7)、(6,8)(7,8)故則事件C包含的基本事件有15個(gè),.答:

⑴共有28個(gè)基本事件;

⑵摸出兩個(gè)球都是紅球的概率為⑶摸出的兩個(gè)球都是黃球的概率為⑷摸出的兩個(gè)球一紅一黃的概率為通過對摸球問題的探討,你能總結(jié)出求古典概型概率的方法和步驟嗎?想一想?.變式?1、從1,2,3,4,5五個(gè)數(shù)字中,任取兩數(shù),求兩數(shù)都是奇數(shù)的概率。解:有如下基本事件(12),(13),(14),(15),(23),(24),(25),(34),(35),(45)∴n=10用A來表示“兩數(shù)都是奇數(shù)”這一事件,則A中包含:(13),(15),(3,5)∴m=3∴P(A)=偶數(shù)呢?一個(gè)是奇數(shù),一個(gè)是偶數(shù)呢?.例2:豌豆的高矮性狀的遺傳由一對基因決定,其中決定高的基因記為D,決定矮的基因記為d,則雜交所得第一代的一對基因?yàn)镈d。若第二子代的D,d基因的遺傳是等可能的,求第二子代為高莖的概率(只要有基因D則其就是高莖,只有兩個(gè)基因全是d時(shí),才顯現(xiàn)矮莖)解:Dd與Dd的搭配方式有四種:DD,Dd,dD,dd,其中只有第四種表現(xiàn)為矮莖,故第二子代為高莖的概率為3/4=75%答:第二子代為高莖的概率為75%.思考

你能求出上述第二代的種子經(jīng)自花傳粉得到的第三代為高莖的概率嗎?答:由于第二子代的種子中DD,Dd,dD,dd型種子各占1/4,其下一代仍是自花授粉,則產(chǎn)生的子代應(yīng)為DD,DD,DD,DD;DD,Dd,dD,dd;DD,dD,Dd,dd;dd,dd,dd,dd。其中只有dd型才是矮莖的,于是第三代高莖的概率為

10/16=5/8。.一.選擇題1.某班準(zhǔn)備到郊外野營,為此向商店訂了帳篷。如果下雨與不下雨是等可能的,能否準(zhǔn)時(shí)收到帳篷也是等可能的。只要帳篷如期運(yùn)到,他們就不會淋雨,則下列說法中,正確的是()A一定不會淋雨B淋雨機(jī)會為3/4C淋雨機(jī)會為1/2D淋雨機(jī)會為1/4E必然要淋雨D課堂練習(xí).二.填空題1.一年按365天算,2名同學(xué)在同一天過生日的概率為____________

2.一個(gè)密碼箱的密碼由5位數(shù)字組成,五個(gè)數(shù)字都可任意設(shè)定為0-9中的任意一個(gè)數(shù)字,假設(shè)某人已經(jīng)設(shè)定了五位密碼。(1)若此人忘了密碼的所有數(shù)字,則他一次就能把鎖打開的概率為____________(2)若此人只記得密碼的前4位數(shù)字,則一次就能把鎖打開的概率____________

1/1000001/101/365.五件產(chǎn)品中有兩件次品,從中任取兩件來檢驗(yàn).(1)一共有多少種不同的結(jié)果?(2)兩件都是正品的概率是多少?(3)恰有一件次品的概率是多少?10種3/103/53張彩票中有一張獎(jiǎng)票,2人按一定的順序從中各抽取一張,則:(1)第一個(gè)人抽得獎(jiǎng)票的概率是_________;(2)第二個(gè)人抽得獎(jiǎng)票的概率是_______.1/31/3.求解古典概型的概率時(shí)要注意兩點(diǎn):(1)古典

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論