



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
《概率的基本性質(zhì)》教學設計一、教學目標:1、知識與技能:(1)正確理解事件的包含、并事件、交事件、相等事件,以及互斥事件、對立事件的概念;(2)概率的幾個基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)(3)正確理解和事件與積事件,以及互斥事件與對立事件的區(qū)別與聯(lián)系.2、過程與方法:通過事件的關(guān)系、運算與集合的關(guān)系、運算進行類比學習,培養(yǎng)學生的類化與歸納的數(shù)學思想。3、情感態(tài)度與價值觀:通過數(shù)學活動,了解教學與實際生活的密切聯(lián)系,感受數(shù)學知識應用于現(xiàn)實世界的具體情境,從而激發(fā)學習數(shù)學的情趣。二、重點與難點:概率的加法公式及其應用,事件的關(guān)系與運算。三、學法與教學用具:1、討論法,師生共同討論,從而使加深學生對概率基本性質(zhì)的理解和認識;2、教學用具:投燈片四、教學設計:創(chuàng)設情境:(1)集合有相等、包含關(guān)系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在擲骰子試驗中,可以定義許多事件如:C1={出現(xiàn)1點},C2={出現(xiàn)2點},C3={出現(xiàn)1點或2點},C4={出現(xiàn)的點數(shù)為偶數(shù)}……師生共同討論:觀察上例,類比集合與集合的關(guān)系、運算,你能發(fā)現(xiàn)事件的關(guān)系與運算嗎?基本概念:(1)事件的包含、并事件、交事件、相等事件見課本P115;(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B).例題分析:例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);事件C:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán).分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯(lián)系與區(qū)別弄清楚,互斥事件是指不可能同時發(fā)生的兩事件,而對立事件是建立在互斥事件的基礎(chǔ)上,兩個事件中一個不發(fā)生,另一個必發(fā)生。解:A與C互斥(不可能同時發(fā)生),B與C互斥,C與D互斥,C與D是對立事件(至少一個發(fā)生).例2拋擲一骰子,觀察擲出的點數(shù),設事件A為“出現(xiàn)奇數(shù)點”,B為“出現(xiàn)偶數(shù)點”,已知P(A)=,P(B)=,求出“出現(xiàn)奇數(shù)點或偶數(shù)點”.分析:拋擲骰子,事件“出現(xiàn)奇數(shù)點”和“出現(xiàn)偶數(shù)點”是彼此互斥的,可用運用概率的加法公式求解.解:記“出現(xiàn)奇數(shù)點或偶數(shù)點”為事件C,則C=A∪B,因為A、B是互斥事件,所以P(C)=P(A)+P(B)=+=1答:出現(xiàn)奇數(shù)點或偶數(shù)點的概率為1例3如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:(1)取到紅色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?分析:事件C是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解,事件C與事件D是對立事件,因此P(D)=1—P(C).解:(1)P(C)=P(A)+P(B)=(2)P(D)=1—P(C)=例4袋中有12個小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?分析:利用方程的思想及互斥事件、對立事件的概率公式求解.解:從袋中任取一球,記事件“摸到紅球”、“摸到黑球”、“摸到黃球”、“摸到綠球”為A、B、C、D,則有P(B∪C)=P(B)+P(C)=;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=答:得到黑球、得到黃球、得到綠球的概率分別是、、.概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);3)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。5、自我評價與課堂練習:1.從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)與次品件數(shù),判斷下列每件事件是不是互斥事件,如果是,再判斷它們是不是對立事件。(1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品;2.拋擲一粒骰子,觀察擲出的點數(shù),設事件A為出現(xiàn)奇數(shù),事件B為出現(xiàn)2點,已知P(A)=,P(B)=,求出現(xiàn)奇數(shù)點或2點的概率之和。3.某射手在一次射擊訓練中,射中10環(huán)、8環(huán)、7環(huán)的概率分別為,,,,計算該射手在一次射擊中:(1)射中10環(huán)或9環(huán)的概率;(2)少于7環(huán)的概率。4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知從中取出2粒都是黑子的概率是,從中取出2粒都是白子的概率是,現(xiàn)從中任意取出2粒恰好是同一色的概率是多少?6、評價標準:1.解:依據(jù)互斥事件的定義,即事件A與事件B在一定試驗中不會同時發(fā)生知:(1)恰好有1件次品和恰好有2件次品不可能同時發(fā)生,因此它們是互斥事件,又因為它們的并不是必然事件,所以它們不是對立事件,同理可以判斷:(2)中的2個事件不是互斥事件,也不是對立事件。(3)中的2個事件既是互斥事件也是對立事件。2.解:“出現(xiàn)奇數(shù)點”的概率是事件A,“出現(xiàn)2點”的概率是事件B,“出現(xiàn)奇數(shù)點或2點”的概率之和為P(C)=P(A)+P(B)=+=3.解:(1)該射手射中10環(huán)與射中9環(huán)的概率是射中10環(huán)的概率與射中9環(huán)的概率的和,即為+=。(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國餐飲設備市場發(fā)展趨勢規(guī)劃研究報告
- 2025-2030年中國鋼制車輪行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國采暖散熱器行業(yè)十三五規(guī)劃及發(fā)展前景分析報告
- 2025-2030年中國通信繼電器市場供需狀況及投資戰(zhàn)略研究報告
- 2025-2030年中國船舶涂料產(chǎn)業(yè)運營狀況與發(fā)展趨勢分析報告
- 2025-2030年中國聚酯多元醇行業(yè)市場現(xiàn)狀分析規(guī)劃研究報告
- 2025-2030年中國網(wǎng)絡借貸市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國精制棉市場運營現(xiàn)狀及投資前景規(guī)劃研究報告
- 2025-2030年中國眼視光行業(yè)發(fā)展趨勢規(guī)劃研究報告
- 實驗經(jīng)濟學實驗設計案例
- 東軟入職合同
- 護理責任組長競聘
- 衛(wèi)生監(jiān)督村醫(yī)培訓課件
- 2024年新青島版(六三制)四年級下冊科學全冊精編復習資料
- 大學生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)(創(chuàng)新創(chuàng)業(yè)課程)全套教學課件
- 礦山開工第一課
- 直腸癌術(shù)后的康復護理
- 性商老師課程培訓課件
- 貴州省教育科學規(guī)劃課題申請書
- 火針療法課件
評論
0/150
提交評論