2022-2023學年安徽省肥東第二中學高三下學期聯(lián)合考試數(shù)學試題含解析_第1頁
2022-2023學年安徽省肥東第二中學高三下學期聯(lián)合考試數(shù)學試題含解析_第2頁
2022-2023學年安徽省肥東第二中學高三下學期聯(lián)合考試數(shù)學試題含解析_第3頁
2022-2023學年安徽省肥東第二中學高三下學期聯(lián)合考試數(shù)學試題含解析_第4頁
2022-2023學年安徽省肥東第二中學高三下學期聯(lián)合考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.02.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.3.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.4.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.45.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.6.若數(shù)列滿足且,則使的的值為()A. B. C. D.7.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.8.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.49.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.10.《九章算術》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現(xiàn)從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.11.函數(shù)的大致圖象為()A. B.C. D.12.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,所有的奇數(shù)次冪項的系數(shù)和為-64,則實數(shù)的值為__________.14.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.15.(5分)某膳食營養(yǎng)科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.16.甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數(shù),直線的斜率之積為定值.18.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.19.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.20.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.21.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.22.(10分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎題.2、D【解析】

連接,可得,在中,由余弦定理得,結合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點睛】本題考查了雙曲線的性質及雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.3、B【解析】

連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.4、B【解析】

解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.5、B【解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數(shù),結合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據(jù)零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.6、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.7、C【解析】

根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.8、D【解析】可以是共4個,選D.9、B【解析】

雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.10、C【解析】

利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.11、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.12、A【解析】

首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質,考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3或-1【解析】

設,分別令、,兩式相減即可得,即可得解.【詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.14、【解析】

將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15、【解析】

記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.16、【解析】

求出所有可能,找出符合可能的情況,代入概率計算公式.【詳解】解:甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為.【點睛】本題考查古典概型及其概率計算公式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】

(1)運用離心率公式和點滿足橢圓方程,解得,,進而得到橢圓方程;(2)設直線,代入橢圓方程,運用韋達定理和直線的斜率公式,以及點在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因為,所以,①又橢圓過點,所以②由①②,解得所以橢圓的標準方程為.(2)證明設直線:,聯(lián)立得,設,則易知故所以對于任意的,直線的斜率之積為定值.【點睛】本題考查橢圓的方程的求法,注意運用離心率公式和點滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運用韋達定理和直線的斜率公式,化簡整理,考查運算能力,屬于中檔題.18、(1)曲線的直角坐標方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】

(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.19、(1)(2)【解析】

(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.20、(1);(2);(3)利潤約為111.2萬元.【解析】

(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.21、(1)的長為4(2)【解析】

(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設,根據(jù)向量垂直關系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設,則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學生的計算能力和空間想象能力.22、(1)詳見解析;(2).【解析】

(1)連接,由菱形的性質以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結論.(2)以為原點建平面直角坐標系,求出平面平與平面的法向量,,最后求得二面角的余

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論