2023學年廣州市重點高三第二次模擬考試數(shù)學試卷含解析_第1頁
2023學年廣州市重點高三第二次模擬考試數(shù)學試卷含解析_第2頁
2023學年廣州市重點高三第二次模擬考試數(shù)學試卷含解析_第3頁
2023學年廣州市重點高三第二次模擬考試數(shù)學試卷含解析_第4頁
2023學年廣州市重點高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.22.設f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調遞減,則()A. B.C. D.3.已知偶函數(shù)在區(qū)間內單調遞減,,,,則,,滿足()A. B. C. D.4.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.5.的展開式中有理項有()A.項 B.項 C.項 D.項6.已知復數(shù),則的虛部為()A.-1 B. C.1 D.7.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.8.已知命題:,,則為()A., B.,C., D.,9.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.10.如圖,在中,,且,則()A.1 B. C. D.11.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.12012.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.78二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(1,2),=(-3,1),則=______.14.已知是定義在上的奇函數(shù),當時,,則不等式的解集用區(qū)間表示為__________.15.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.16.已知向量,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,設A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.18.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.19.(12分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據,得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學期望的取值范圍?20.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.21.(12分)已知函數(shù).(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.22.(10分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據可導函數(shù)在極值點處的導數(shù)值為,得出,再由等比數(shù)列的性質可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B【點睛】本題主要考查了等比數(shù)列下標和性質以應用,屬于中檔題.2.D【解析】

利用是偶函數(shù)化簡,結合在區(qū)間上的單調性,比較出三者的大小關系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調性比較大小,屬于基礎題.3.D【解析】

首先由函數(shù)為偶函數(shù),可得函數(shù)在內單調遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調性,不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞,屬于中檔題.4.A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.5.B【解析】

由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.6.A【解析】

分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.7.A【解析】

設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.8.C【解析】

根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.9.D【解析】

利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎題.10.C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.11.C【解析】

可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.12.D【解析】

先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉化計算,再根據等差數(shù)列求和公式計算出結果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質應用,等差數(shù)列的求和公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-6【解析】

由可求,然后根據向量數(shù)量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數(shù)量積的坐標表示,屬于基礎試題.14.【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(15.18【解析】

根據系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據其中三個個體的編號求出另一個個體的編號.【詳解】解:根據系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.16.1【解析】

根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數(shù),由③知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數(shù)列的創(chuàng)新應用題,考查數(shù)學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推理求解,屬于較難題.18.(1),(2)證明見解析【解析】

(1)利用首項和公差構成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據不等關系證明即可.【詳解】(1)設首項為,公差為.由題意,得,解得,∴,∴,∴當時,∴,.當時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.【點睛】本題考查等差數(shù)列、等比數(shù)列的綜合應用,難度一般.(1)當用求解的通項公式時,一定要注意驗證是否成立;(2)當一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.19.(1)見解析;(2)【解析】

(1)X的可能取值為300,500,600,結合題意及表格數(shù)據計算對應概率,即得解;(2)由題意得,分,及,分別得到y(tǒng)與n的函數(shù)關系式,得到對應的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1°.當時,利潤此時利潤的分布列為.2.時,利潤此時利潤的分布列為.綜上的數(shù)學期望的取值范圍是.【點睛】本題考查了函數(shù)與概率統(tǒng)計綜合,考查了學生綜合分析,數(shù)據處理,轉化劃歸,數(shù)學運算的能力,屬于中檔題.20.(1)見解析(2)【解析】

(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)設AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以OC,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論