




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年內(nèi)蒙古自治區(qū)鄂爾多斯市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
3.
4.
5.
6.
7.A.dx+dy
B.
C.
D.2(dx+dy)
8.下列命題正確的是().A.A.
B.
C.
D.
9.
10.A.e
B.e-1
C.-e-1
D.-e
11.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在
12.
13.
14.
15.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
16.
17.
18.()。A.
B.
C.
D.
19.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
20.
二、填空題(20題)21.
22.求
23.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.
24.
25.
26.方程y'-ex-y=0的通解為_____.
27.設(shè)y=ex,則dy=_________。
28.設(shè),則y'=______.
29.設(shè)=3,則a=________。
30.設(shè)y=e3x知,則y'_______。
31.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
32.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
33.
34.
35.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
44.
45.求微分方程的通解.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
48.
49.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
53.將f(x)=e-2X展開為x的冪級(jí)數(shù).
54.求曲線在點(diǎn)(1,3)處的切線方程.
55.
56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
57.
58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
59.
60.證明:
四、解答題(10題)61.
62.求函數(shù)y=xex的極小值點(diǎn)與極小值。
63.
64.
65.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
66.
67.
68.
69.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。
70.
五、高等數(shù)學(xué)(0題)71.∫f(x)dx=F(x)+則∫c-xf(e-x)dx=__________。
六、解答題(0題)72.
參考答案
1.D
2.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
3.A
4.D
5.D
6.A解析:
7.C
8.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
9.B
10.B所給極限為重要極限公式形式.可知.故選B.
11.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).
函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.
函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).
函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
12.A解析:
13.C
14.C解析:
15.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
16.B
17.C
18.C由不定積分基本公式可知
19.C
20.D
21.00解析:
22.=0。23.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
24.
25.26.ey=ex+Cy'-ex-y=0,可改寫為eydy=exdx,兩邊積分得ey=ex+C.
27.exdx28.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
29.30.3e3x31.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
32.1
33.
34.
35.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
36.arctanx+C37.1
38.
39.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
40.
41.
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.
44.
45.46.函數(shù)的定義域?yàn)?/p>
注意
47.
48.
則
49.
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%51.由二重積分物理意義知
52.
列表:
說明
53.54.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 實(shí)驗(yàn)報(bào)告與預(yù)習(xí)
- 科技引領(lǐng)下的物流業(yè)智能化發(fā)展研究
- 2024年梧州市龍圩區(qū)招錄公益性崗位人員筆試真題
- 知產(chǎn)法在品牌保護(hù)中的運(yùn)用與實(shí)踐
- 2024年山西大學(xué)附屬中學(xué)晉中學(xué)校教師招聘考試真題
- 2024年內(nèi)蒙古呼和浩特土默特學(xué)校招聘教師考試真題
- 合伙窗簾合同范本
- 印刷書刊合同范本
- 2024年甘肅蘭州電源車輛研究所有限公司招聘考試真題
- 衣柜安裝合同范本
- 2024年山東商務(wù)職業(yè)學(xué)院高職單招語文歷年參考題庫(kù)含答案解析
- 醫(yī)學(xué)教育中的學(xué)習(xí)風(fēng)格與個(gè)性化教學(xué)
- GB/T 45167-2024熔模鑄鋼件、鎳合金鑄件和鈷合金鑄件表面質(zhì)量目視檢測(cè)方法
- 2023年東北公司加油站賬務(wù)人員考試題庫(kù)
- 2024年四川綿陽初中學(xué)業(yè)水平考試英語試卷真題(含答案詳解)
- 《鴉片戰(zhàn)爭(zhēng)改》課件
- 2024至2030年中國(guó)數(shù)字壓力表行業(yè)投資前景及策略咨詢研究報(bào)告
- 《SPIN顧問式銷售》課件
- 2025屆河南省鄭州市外國(guó)語學(xué)校高三考前熱身英語試卷含解析
- 【初中數(shù)學(xué)】2024-2025學(xué)年人教版七年級(jí)數(shù)學(xué)上冊(cè)期末模擬練習(xí)
- 統(tǒng)編版九年級(jí)道德與法治上冊(cè)期中考試卷帶答案
評(píng)論
0/150
提交評(píng)論