




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
導(dǎo)數(shù)的基本公式與運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式(x)=x
-1.(ax)=axlna.(ex)=ex.(sinx)=cosx.(cosx)=-sinx.(tanx)
=
sec2x.(cotx)
=
-csc2x.(secx)
=
secxtanx.(cscx)
=
-cscxcotx.另外還有反三角函數(shù)的導(dǎo)數(shù)公式:定理2.1
設(shè)函數(shù)
u(x)、v(x)在x處可導(dǎo),在x
處也可導(dǎo),(u(x)v(x))=u(x)v(x);(u(x)v(x))=u(x)v(x)+
u(x)v(x);導(dǎo)數(shù)的四則運(yùn)算且則它們的和、差、積與商推論
1
(cu(x))
=cu(x)(c為常數(shù)).推論
2乘法法則的推廣:補(bǔ)充例題:求下列函數(shù)的導(dǎo)數(shù):解根據(jù)推論1可得(3x4)=3(x4),(5cosx)=5(cosx),(cosx)=-sinx,(ex)=ex,(1)=0,故f(x)=(3x4
-ex+5cosx-1)=(3x4)
-(ex)+(5cosx)
-(1)=12x3
-ex-5sinx.f(0)=(12x3-ex-5sinx)|x=0=-1又(x4)=4x3,
例
1設(shè)f(x)=3x4–ex
+5cosx-1,求f(x)及f(0).
例
2設(shè)y=xlnx
,求y.解根據(jù)乘法公式,有y=(xlnx)=x(lnx)+(x)lnx解根據(jù)除法公式,有例
3設(shè)求y.教材P32例2求下列函數(shù)的導(dǎo)數(shù):解:
高階導(dǎo)數(shù)如果可以對(duì)函數(shù)f(x)的導(dǎo)函數(shù)f(x)再求導(dǎo),所得到的一個(gè)新函數(shù),稱(chēng)為函數(shù)y=f(x)的二階導(dǎo)數(shù),記作f(x)或y或如對(duì)二階導(dǎo)數(shù)再求導(dǎo),則稱(chēng)三階導(dǎo)數(shù),記作f(x)或四階或四階以上導(dǎo)數(shù)記為y(4),y(5),·
·
·,y(n)或·
·
·
,
而把f(x)
稱(chēng)為f(x)的一階導(dǎo)數(shù).例3求下列函數(shù)的二階導(dǎo)數(shù)解:二階以上的導(dǎo)數(shù)可利用后面的數(shù)學(xué)軟件來(lái)計(jì)算
推論
設(shè)
y=f(u),u=(v),v=(x)均可導(dǎo),則復(fù)合函數(shù)
y=f[((x))]也可導(dǎo),以上法則說(shuō)明:復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于復(fù)合函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù).先將要求導(dǎo)的函數(shù)分解成基本初等函數(shù),或常數(shù)與基本初等函數(shù)的和、差、積、商.任何初等函數(shù)的導(dǎo)數(shù)都可以按常數(shù)和基本初等函數(shù)的求導(dǎo)公式和上述復(fù)合函數(shù)的求導(dǎo)法則求出.
復(fù)合函數(shù)求導(dǎo)的關(guān)鍵:正確分解初等函數(shù)的復(fù)合結(jié)構(gòu).求導(dǎo)方法小結(jié):例5:求下列函數(shù)的導(dǎo)數(shù)(1)(2)(3)(4)
二元函數(shù)的偏導(dǎo)數(shù)的求法求對(duì)自變量(或)的偏導(dǎo)數(shù)時(shí),只須將另一自變量(或)看作常數(shù),直接利用一元函數(shù)求導(dǎo)公式和四則運(yùn)算法則進(jìn)行計(jì)算.例1設(shè)函數(shù)求解:
例2設(shè)函數(shù)解:類(lèi)似可得
二元函數(shù)的二階偏導(dǎo)數(shù)函數(shù)z=f(x,y)的兩個(gè)偏導(dǎo)數(shù)一般說(shuō)來(lái)仍然是x,y
的函數(shù),如果這兩個(gè)函數(shù)關(guān)于
x,y
的偏導(dǎo)數(shù)也存在,則稱(chēng)它們的偏導(dǎo)數(shù)是f(x,y)的二階偏導(dǎo)數(shù).依照對(duì)變量的不同求導(dǎo)次序,二階偏導(dǎo)數(shù)有四個(gè):(用符號(hào)表示如下)其中及稱(chēng)為二階混合偏導(dǎo)數(shù).類(lèi)似的,可以定義三階、四階、…
、n
階偏導(dǎo)數(shù),二階及二階以上的偏導(dǎo)數(shù)稱(chēng)為高階偏導(dǎo)數(shù),稱(chēng)為函數(shù)f(x,y)的一階偏導(dǎo)數(shù).注:當(dāng)兩個(gè)二階導(dǎo)數(shù)連續(xù)時(shí),它們是相等的即
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中外合作開(kāi)發(fā)合同(電子產(chǎn)品)
- app 委托 開(kāi)發(fā) 合同樣本
- 養(yǎng)殖技術(shù)入股協(xié)議合同樣本
- 兒童籃球培訓(xùn)合同樣本
- 農(nóng)村開(kāi)鎖服務(wù)合同樣本
- pvc泳池合同標(biāo)準(zhǔn)文本
- 兼職人員勞務(wù)合同樣本
- 產(chǎn)品加盟授權(quán)合同范例
- 關(guān)鋁股合同樣本
- 企業(yè)并購(gòu)服務(wù)合同樣本
- 2025年山東省淄博市張店區(qū)中考一模歷史試題(含答案)
- 2025年內(nèi)蒙古中考一模英語(yǔ)試題(原卷版+解析版)
- 外研版(2025新版)七年級(jí)下冊(cè)英語(yǔ)期中復(fù)習(xí):Unit 1~3+期中共4套學(xué)情調(diào)研測(cè)試卷(含答案)
- ISO9001質(zhì)量管理體系培訓(xùn)(共60頁(yè)).ppt
- 商業(yè)票據(jù)與核算
- (完整版)PHQ-9抑郁癥篩查量表
- 山中問(wèn)答教學(xué)設(shè)計(jì)
- 基于高中思想政治學(xué)科核心素養(yǎng)的教學(xué)研究與實(shí)踐PPT課件
- 礦山及其他工程破損山體植被恢復(fù)技術(shù)(DOC25頁(yè))
- 鋁合金門(mén)窗、百葉施工組織設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)(論文)-網(wǎng)球自動(dòng)撿球機(jī)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論