




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
Thermodynamicdesignofcondensersandevaporators:FormulationandapplicationsChristianJ.L.HermesabstractThispaperassessesthetherm-hydraulicdesignapproachintroducedinapreviouspublication(Hermes,2012)forcondensersandevaporatorsaimedatminimumentropygeneration.Analgebraicmodelwhichexpressesthedimensionlessrateofentropygenerationasafunctionofthenumberoftransferunits,the?uidproperties,thethermal-hydrauliccharacteristics,andtheoperatingconditionsisderived.Casestudiesarecarriedoutwithdifferentheatexchangercon?gurgitationsforsmall-capacityrefrigerationapplications.Thetheoreticalanalysisledtotheconclusionthatahigheffectivenessheatexchangerdoesnotnecessarilyprovidethebestthermal-hydraulicdesignforcondenserandevaporatorcoils,whentheratesofentropygenerationduetoheattransferand?uidfrictionareofthesameorderofmagnitude.Theanalysisalsoindicatedthatahighaspectratioheatexchangerproducesaloweramountofentropythanalowaspectratioone.Conceptionthermodynamiccondenseretdesse′evaporate:formulationetapplications.Keywords:floatinghead;heatexchanger;design;industry1.IntroductionCondensersandevaporatorsareheatexchangerswithfairlyuniformwalltemperatureemployedinawiderangeofHVACRproducts,spanningfromhouseholdtoindustrialapplications.Ingeneral,theyaredesignedaimingataccomplishingacertainheattransferdutyatthepenaltyofpumpingpower.Therearetwowell-establishedmethodsavailableforthethermalheatexchangerdesign,thelog-meantemperaturedifference(LMTD)andtheeffectiveness/numberoftransferunits(ε-NTU)approach(Kakac?andLiu,2002;ShahandSiliculose,2003).Thesecondhasbeenpreferredtotheformerforthesakeofcompactheatexchangerdesignastheeffectiveness(ε),de?nedastheratiobetweentheactualheattransferrateandthemaximumamountthatcanbetransferred,providesa1st-lawcriteriontoranktheheatexchanger.performance,whereasthenumberoftransferunits(NTU)comparesthethermalsizeoftheheatexchangerwithitscapacityofheatingorcoolingfluid.Furthermore,theε-NTUapproachavoidsthecumbersomeiterativesolutionrequiredbytheLMTDforoutlettemperaturecalculations.Nonetheless,neitherε-NTUorLMTDapproachesaresuitabletoaddresstheheattransfer/pumpingpowertrade-off,whichisthecruxforabalancedheatexchangerdesign.Forthispurpose,Bajan(1987)establishedtheso-calledthermodynamicdesignmethod,laterrenamedasentropygenerationminimizationmethod(Bajan,1996),whichbalancesthethermodynamicirreversibilitiesduetotheheattransferwitha?nitetemperaturedifferencetothoseassociatedwiththeviscous?uid?ow,thusprovidinga2nd-lawcriterionthathasbeenwidelyusedforthesakeofheatexchangerdesignandoptimization(SanandJan,2000;Leprousetal.,2005;AchaeanandWongwises,2008;Mishapetal.,2009;Kotciogluetal.,2010;Pussolietal.,2012;Hermesetal.,2012).However,themodelsadoptedinthosestudiesdonotprovideastraightforwardindicationofhowthedesignparameters(geometry,?uidproperties,workingconditions)affecttherateofentropygeneration.Theyalsorequirecomplexnumericalsolutions,beingthereforenotsuitableforback-of-the-envelopecalculationsintheindustrialenvironment.Inarecentpublication,Hermes(2012)advancedanexplicit,algebraicformulationwhichexpressesthedimensionlessrateofentropygenerationasafunctionofthenumberoftransferunits,the?uidproperties,thethermalhydrauliccharacteristics(jandfcurves),andtheoperating.conditions(heattransferduty,corevelocity,andcoilsurfacetemperature)forheatexchangerswithuniformwalltemperature.Anexpressionfortheoptimumheatexchangereffectiveness,basedontheworkingconditions,heatexchangergeometryand?uidproperties,wasalsopresented.ThepresentpaperisthereforeaimedatassessingtheformulationintroducedbyHermes(2012)fordesigningcondensersandevaporatorsforrefrigerationsystemsspanningfromhouse-holdapplication,whichamountsw10%oftheelectricalenergyconsumedworldwide(MaloandSilva,2010).2.MathematicalformulationIngeneral,condensersandevaporatorsforrefrigerationapplicationsaredesignedconsideringthecoil?oodedwithtwo-phaserefrigerant,andalsoawalltemperatureequaltotherefrigeranttemperature(BarbarossaandHermes,2008),insuchawayasthetemperaturepro?lesalongthestreamsarethoserepresentedinFig.1.Inaddition,theouter(e.g.,air,water,brine)sideheattransfercoef?cientandthephysicalpropertiesareassumedtobeconstant.Therefore,theheattransferrateifcalculatedfrom:(1)whereisthemass?owrate,Ti,ToandTsaretheinlet,outletandsurfacetemperatures,respectively,Q?hAs(TseTm)istheheattransferrate,Tmisthemean?owtemperatureovertheheattransferarea,As,andεistheheatexchangereffectiveness,calculatedfrom(KaysandLondon,1984):(2)whereNTU?hAs/mcpisthenumberoftransferunits.Thepressuredrop,ontheotherhand,canbecalculatedfrom(KaysandLondon,1984):(3)wherefisthefrictionfactor,ucisthevelocityintheminimum?owpassage,Ac,andthesubscripts“i”and“o”refertotheheatexchangerinletandoutletports,respectively.OneshouldnotethatEqs.(1)and(3)canbelinkedtoeachotherthroughthefollowingapproximationfortheGibbsrelation,(4)whereTmz(TitTo)/2,andtheentropyvariation,soesi,iscalculatedfromthe2nd-lawofThermodynamics,(5)wherethe?rsttermintheright-handsideaccountsforthereversibleentropytransportwithheat(_Q=Ts),whereas_Sgistheirreversibleentropygenerationduetoboththeheattransferwith?nitetemperaturedifferenceandtheviscousow.SubstitutingEqs.(1),(3)and(5)intoEq.(4),itfollowsthat:NS?(6)whereNSisthedimensionlessrateofentropygeneration.TheerrorsassociatedtotheapproximationusedinEq.(4)aremarginal:notingthatDTm<20Kinmostsmall-capacityrefrigerationapplications,itfollowsthatthedifferencebetweentheexactandapproximatedmeantemperatureneverexceeds1K,whichinturnaffectsthedimensionlessentropygenerationbylessthan1%.Nownotingthatbothcondensersandevaporatorsaredesignedtoprovideaheattransferdutysubjectedto?owrateandfaceareaconstraintsEq.(6)canbere-writtenasfollows(Hermes,2012):(7)AndQ?(ToeTi)/TsadimensionlesstemperaturedifferencewithbothToandTiknownfromtheapplication.Oneshouldnotethatthe?rstandsecondtermsoftheright-handsideofEq.(7)standforthedimensionlessentropygenerationratesassociatedwiththeheattransferwith?nitetemperaturedifferenceandtheviscous?ow,respectively.TheoptimumheatexchangerdesignNTUoptthatminimizestherateofentropygenerationisobtainedfrom(Hermes,2012):(8)dropeffects,whichruletheentropygenerationforthelowaspectratiodesigns,areattenuatedforlowNTUvalueswheretheentropygenerationdueto?nitetemperaturedifferenceisDominant.4.CasestudiesForthesakeofheatexchangerdesign,Eq.(8)hastobesolvedconcurrentlywithε?(ToeTi)/(TseTi)asthecoilsurfacetemperature,Ts,mustbefreetovarythusensuringthatQ(andso_Qand_m)isconstrained.However,thesolutionisimplicit.forTs,thusrequiringaniterativecalculationprocedure:aguessedTsvalueisneededtocalculatetheeffectivenessandNTU?eln(1eε),whichisusedinEq.(8)withj?j(Re)andf?f(Re)curves,andalsowiththedimensionlesscorevelocitytocomeoutwithQ,whichinturnisusedtorecalculateTsuntilconvergenceisachieved.Firstlyconsideranair-suppliedtube-?ncondenserforsmall-capacityrefrigerationappliancesrunningunderthefollowingworkingconditions:_Q?1kW,_V?1000m3h1Ti?300K(Waltrichetal.,2011;Hermesetal.,2012).Letsassumetwoheatexchangercon?gurations:(i)circulartubeswith?at?ns(i.e.,KaysandLondon’ssurface8.0-3/8T),whosethermal-hydrauliccharacteristicsarej?0.16$Re,tubesand?ns(KaysandLondon’ssurfaceCF-8.72),whosethermal-hydrauliccharacteristicsarej?0.22$Re0.4f?0.20$Re0.2,s?0.524andDh?3.93mm.AlsonotethatPrz0.7forair.Fig.4comparestheperformancecharacteristics(jandfcurves)ofsurfaces8.0-3/8TandCF-8.72asfunctionsofRe?rucDh/m.Fig.5comparesthedimensionlessentropygenerationObservedforbothsurfacesasafunctionofNTU.Acurveofε?ε(NTU),whichthesameforbothsurfaces,isalsoplottedtobeusedasareference.Itcanbeclearlyseenthatthe(ε,NTU)designwhichminimizestherateofentropygenerationis(0.61,0.95)forsurface8.0-3/8Tand(0.57,0.81)forsurfaceCF-8.72.Itcanalsobenotedthatthecircular-?nsurface3/8TforthesameReynoldsnumber(seeFig.4).ForlowNTUvalues,wheretheentropygenerationisruledbyNS,DT,bothsurfacesshowedsimilarNSvaluesastheirj-curvesareclose(seeFig.4).Fig.6comparesthreedifferentcondenserdesignsconsid-eringsurface8.0-3/8Tandfaceareasvaryingfrom0.025to0.1m2runningunderthesameworkingconditions.Theheatexchangerlengthwasalsovariedinordertoaccommodatetheheattransfersurfaceareafordifferentfaceareas.Foravertical,constantNTUline(i.e.sameheattransferarea),itcanbeclearlyobservedthataheatexchangerdesignwithhighaspectratio(higherfacearea,smallerlengthinthe?owdirection)producesasigni?cantlyloweramountofentropyincomparisontoalowaspectratiodesign(lowerfacearea,largerlength).ItcanbeadditionallyobservedthattheNScurvesconvergeforlowNTUvalues.Thisissoasthepressuredropeffects,whichruletheentropygenerationforthelowaspectratiodesigns,areattenuatedforlowNTUvalueswheretheentropygenerationdueto?nitetemperaturedifferenceisDominant.Nowconsideranair-suppliedevaporatorforhouseholdrefrigerationappliances,comprisedof10tuberowsinthe?owdirectionand2rowsinthetransversaldirection,whoseperformancecharacteristicsareasfollowsfz5.8isthe?nningfactor,Lz0.2mistheheatexchangerFig.7showstherateofentropygenerationasafunctionofNTUfortheno-frostevaporator.Itcanbeclearlyseenthatthelength,Dtz8mmisthetubeO.D.,Afz0.02misthefacearea,andsz0.72.Theworkingconditionsare:Tiz260K.Inthefollowinganalysis,themasstransferandtherelatedfrostaccretionphenomenahavenotbeentakenintoaccount.minimumentropygenerationtakesplaceforNTUw6.5andε/1,thusindicatingthat,inthistypeofevaporator,thepressuredropeffectsarenegligibleincomparisonwiththeheattransferwith?nitetemperaturedifference.Nonetheless,these?guresmaychangedramaticallyinpresenceoffrost,whichincreasesnotonlythepressuredropbutalsothethermalconductionresistance.alsonotedthattheminimumdimensionlessentropygenerationratenotonlyincreasesassdecreases,butalsothattheoptimamovetowardstheleft,IndicatingthatthepressuredropeffectsbecomedominantforlowerNTUvaluesassdecreases.ItcanalsobenotedthatthecurvesfordifferentsconvergeforlowNTUvaluesasmainlyaffectsthepressuredropratherthanthetemperaturedifference,beingtheformerattenuatedforlowNTUvalues.Inadditiontotheoptimafoundforthenumberoftransferunitsand,consequently,fortheheatexchangereffectiveness,twootherimportantdesignparameters,the?owpath,4L/Dh,andtheheatexchangersurfaceareadensity,b?As/AfL,doalsohaveoptimumvalues(seeFig.9)sincebotharestronglydependentonNtu:4L/Dh?NTU/St(seeFig.9a)andb?4s/Dh(seeFig.9b)whereSt?j/Pr2/3istheStantonnumber.Inbothcases,theoptimum?owpathandheatexchangersurfaceareadensityarecalculatedasfollows:(9)(10)Fig.9illustratesEqs.(9)and(10).UnlikeFig.8,thecurvesinFig.9adonotconvergeforlowNTUvaluesaslowersvaluesimplyonhighercorevelocitieswhichenhancetheheattransferprocess(higherjorSt)evenincaseoflowNTU.InFig.9b,itcanbenotedthatthecurvescrosseachotherincaseoflowNTUvalues,whichisduetothein?u-enceofsonb.SummaryandconclusionsThisstudyassessedananalyticalformulationthatcon?atestwodifferentheatexchangerdesignmethodologies,theKaysandLondon’s(1984)ε-NTUapproachandtheBejan’s(1996)methodofentropygenerationminimization.Expressionsforoptimumheatexchangereffectiveness,numberoftransferunits,?owpathandheatexchangersurfaceareadensityarealsodevised.Itwasshownthattheredoesexistaparticularε-NTUdesignforcondensersandevaporatorsthatminimizesthedimensionlessrateofentropygeneration.Tothisobser-vationfollowstheconclusionthatahigheffectivenessheatexchangerhasnotnecessarilythebestthermal-hydraulicdesign,astheeffectivenessdoesnotaccountforthepumpingpowereffect.Casestudiesconsideringatube-?ncondenserforlightcommercialrefrigerationapplicationsandanevaporatorforfrost-freerefrigeratorswerealsocarriedout.Incaseofthecondensercoil,wheretheentropyproductionduetoviscous?uid?owisofthesameorderofthatdueto?nitetemperaturedifference,theanalyticalformulationofHermes(2012)showedtobesuitableforthermodynamicoptimizations.Theanalysisalsoindicatedthataheatexchangerdesignwithahighaspectratioispreferabletoalowaspectratiooneastheformerproducesadramaticallyloweramountofentropy.Inaddition,itwasfoundthatincaseofa“no-frost”evaporatorworkingunderdrycoilconditions,thepressuredropeffectonthedimensionlessentropyproductionisnegligibleincomparisontothe?nitetemperaturedifference,thusindi-catingthatEq.(8)shouldbeusedwithgreatcaretoavoidaneconomicallyunfeasible(highNTU)design.Ononehand,sincethecoiltemperatureistreatedasa?oatingparameterduringtheoptimizationexercise,thedesignforheattransferenhancementleadstoloweraveragetemperaturedifferencesand,therefore,tolowercondensingtemperatureandhigherevaporatingtemperature.Ontheotherhand,theoptimizationforpressuredropreductionyieldsahighermass?owrateforthesamepumpingpower,thusimprovingtheheattransfercoef?cientwhichalsotendstoreducethecondensertemperatureorincreasetheevaporatingtemperature.SincetherefrigerationsystemCOPobeystheTevap/(TcondeTevap)scale,itcanbestatedthattheheatexchangerdesignthatpresentsthebestlocal(componentlevel)performanceintermsofminimumentropygenerationalsoleadstothebestglobal(system-level)performance.冷凝器和蒸發(fā)器的熱力設計:制定和應用摘要這份評估旨在用以前出版物中的最小熵產(chǎn)生法介紹的蒸發(fā)器及冷凝器中熱液的設計方法。其中表示無量綱率的熵產(chǎn)生作為函數(shù)的轉(zhuǎn)讓單位、液體屬性、熱-水力特性和運行條件數(shù)的代數(shù)模型產(chǎn)生而來。與不同換熱器配置為小容量制冷的應用進行了個體案例研究。理論分析得出的結(jié)論為高效率換熱器并不一定提供冷凝器和蒸發(fā)器的線圈,最佳的熱工水力設計時的熱轉(zhuǎn)移和液體摩擦的熵產(chǎn)生率的數(shù)量級相同。分析報告也表明高縱橫比換熱器產(chǎn)生熵比低的縱橫比一個較低的數(shù)額。關鍵字:冷凝器;蒸發(fā)器;概念;優(yōu)化介紹冷凝器和蒸發(fā)器是具有相當均勻壁溫的換熱器,是被用于范圍較大的的暖通空調(diào)的研發(fā)產(chǎn)品,是跨越從家庭到工業(yè)的應用。一般情況下,它們設計旨在以很大的功率完成一種特定的熱轉(zhuǎn)換任務。如今有兩種有效的方法可用于熱換熱器設計、溫度平均對數(shù)比和效能/傳質(zhì)單元數(shù)的辦法,第二個一直是首選,前者主要用于板式換熱器的設計,為了緊湊式換熱器設計的有效性,定義為實際的熱傳遞率之間的比率,可以傳輸?shù)淖畲蠼痤~。提供了一個第一定律標準等級的熱交換器的性能,而數(shù)量的傳輸單位比較熱的大小與它的容量換熱器的加熱或冷卻液,此外,ε-NTU方法避免了繁瑣的解決方案所需的溫度平均對數(shù)比對于出口溫度的計算.盡管如此,無論是ε-NTU或溫度平均對數(shù)比方法都不適合解決傳熱/泵功率交換,這是一個平衡的換熱器設計的關鍵。為此,Bejan(1987)建立了叫做的熱力學設計方法,后改名為熵產(chǎn)生最小化方法,平衡的熱力學不可逆性,由于傳熱的粘性流體流相關聯(lián)的那些具有有限的溫度差,從而提供了已被廣泛應用為換熱器設計與優(yōu)化。從而提供了一種第二法的標準,已被廣泛用于熱交換器的設計和優(yōu)化的緣故,然而,在這些研究中所采用的模型并沒有提供一個簡單的標志的設計參數(shù)是如何影響的熵產(chǎn)生率。在最近的一份出版物中,愛馬仕(2012年)提出一個明確的,代數(shù)的配方,它表示的無量綱熵產(chǎn)率的函數(shù)的傳質(zhì)單元數(shù)流體性質(zhì)水力特性(j和f曲線),和熱交換器的運行條件具有均勻壁溫。并根據(jù)工作條件給出了一個表達式的優(yōu)化換熱器效率和換熱器幾何和流體性質(zhì),因此,本論文旨在評估制定出臺愛馬仕(2012年)設計的冷凝器和蒸發(fā)器的制冷系統(tǒng),涵蓋從家庭到輕型商用應用程序,這相當于全球10%的電能消耗。數(shù)學模型板式換熱器數(shù)值分析法用到了對流結(jié)構(gòu)和U型結(jié)構(gòu)中。四個APVSR3標準的板形成三個流動通道。兩側(cè)的通道有向下流的熱流體,然而中間通道有向上流動的冷流體。換熱器的中間通道的V型區(qū)域被分為五個軸向部分,這樣流體從一個軸向部分進入下一個部分。進口和出口處是在板的左下角和右上角??墒窍鄬χ虚g通道而言,兩側(cè)通道進口和出口處是與之相反的。應該指出的,在換熱器的不同區(qū)域,三角形分布器的存在會使熱交換部位每一單元長度都是有區(qū)別的。然而這種區(qū)別在本文并不值得推崇,因為這些節(jié)點是在主要的V型部位,這樣軸向分段被假設是均等的。板的幾何體和流程在(Haseler高慶宇,1992年)中用于局部溫度測量實驗。這使兩種數(shù)據(jù)的對比更加有意義。數(shù)學模型基于以下假設條件可通過能量平衡方程建立:軸向流傳導在流動通道和板上表現(xiàn)不顯著;換熱器的尾部板是絕緣的;穩(wěn)態(tài)條件;熱流體均勻分布在兩側(cè)邊通道;忽略熱損失;沒有相變(沸騰和冷凝);除了粘度,其他物理性質(zhì)不變;一維流動;通過子通道的溫度變化忽略不計。假設在每條通道的垂直方向,一維流動的流體會保持一個平均速度運動。假設均勻分布的流體在冷熱流體通道的流速是恒定的。基于以上的假設,圖1控制體的能量方程是:(1)采用穩(wěn)態(tài)假定條件,方程(1)可簡化為:(2)對稱的幾何形狀和流動使控制體(如圖1)從兩側(cè)的通道均等的吸收能量,并且th在側(cè)邊通道與之相同,由于這個原因,方程(2)可變?yōu)椋?3)無論是左手邊的通道還是右手邊的通道,一個相似的控制體只從一邊的通道來吸收能量。其中一邊通道的控制體的能量平衡方程是:將方程(3)和(4)組成方程組,通過方程組來控制換熱器相鄰通道流體的溫度分布。對U很大變化的解析解,除了如(Mehrabian,2003)等一些特殊情況下,會變得非常復雜并且不切合實際。(4)數(shù)值分析數(shù)值分析法中使換熱器分成一些軸向的部分。一個典型的軸向部分都有一個表面積。對于這個增加的表面積,冷熱流體的溫度分別是和,我們可以假設總傳熱系數(shù)可以作為這些溫度的函數(shù)而表示出來。這樣:等式2可以應用在軸截面上,表示為:(5)等式(3)和(4)也可以運用在換熱器相鄰通道的兩個軸截面上,可寫為:(6)(7)上述方程的解的獲得是當空間導數(shù)存在偏差時。以viscosities(Yaws,2003)為依據(jù)的溫度數(shù)據(jù)表被編入計算機程序中,并且這個程序可以表示出每個軸截面上,流體流動時的溫度下的黏度。線性插值的操作就開始進行,此時溫度數(shù)值與表值不一致。像密度、熱導率等一些其他的流體性質(zhì)與溫度無關。每種流體的這些特性的數(shù)值以平均流體溫度來指定,并且作為輸入數(shù)據(jù)。冷熱流體的入口溫度作為數(shù)值分析的邊界條件。板式換熱器通道中的流體無量綱傳熱系數(shù)可看成是與熱傳遞相關的一種類型(Raoetal.,2002):(8)ShahandFocke(1988)進行了實驗研究板式換熱器熱傳遞和壓降特性。他們注意到,常數(shù)C取決于換熱板的類型和換熱器的幾何形狀,而常數(shù)n取決于流體的流態(tài)。Edwardsetal.(1974)研究證明得出,在雷諾數(shù)大約小于10時,實驗數(shù)據(jù)是以標繪的,而不是APVJuniorParaflow板落在表明典型傳熱關系的坡度線1/3處的Re值:在雷諾數(shù)較高時(Re大于10),坡度約為,這樣會得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品壟斷合同樣本
- 冷庫租貨合同標準文本
- 代儲存合同樣本
- 農(nóng)村集體土地開發(fā)合同樣本
- 停車位協(xié)議合同樣本
- 修路槽鋼租賃合同樣本
- 出售酒店椅子合同標準文本
- 上海承租合同樣本
- 農(nóng)業(yè)規(guī)劃項目合同樣本
- 代理商授權(quán)合同標準文本
- 居室空間設計 課件 項目四 起居室空間設計
- 【歷史】隋唐時期的科技與文化教學設計 2024-2025學年統(tǒng)編版七年級歷史下冊
- 勞務外包服務投標方案(技術(shù)標)
- 中國水泥回轉(zhuǎn)窯行業(yè)發(fā)展監(jiān)測及投資方向研究報告
- 《檔案編研工作》課件
- 初中英語牛津深圳版單詞表(按單元順序)七年級至九年級
- 槍支安全及使用指南
- 《肝衰竭診治指南(2024版)》解讀
- 國省道公路標志標線維護方案投標文件(技術(shù)方案)
- 【MOOC】科技英語寫作-西安電子科技大學 中國大學慕課MOOC答案
- 電動汽車課件
評論
0/150
提交評論