版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
TheElectronicMailGame:
StrategicBehaviorUnder"AlmostCommonKnowledge"
ArielRubinsteinTheAmericanEconomicReview(Jun.,1989)PresentedbyCuiZhipeng1TheCoordinatedAttackStory
Army1Army2EnemyAttackatdawnIseeIseeyouseeIseeyouseeIseeAttackatdawnornotAttackatdawnornot2Contributionsofthepaper
Themainmessageofthispaperisthatplayers'strategicbehaviorunder"almostcommonknowledge"maybeverydifferentfromthatundercommonknowledge.
“AlmostCommonKnowledge“VS“CommonKnowledge”3DefinitionofthesetwokindknowledgeCommonknowledge:
itiscommonknowledgebetweentwoplayers1and2thatTheplayedgameisG,
ifbothknowthatthegameisG,
1knowsthat2knowsthatthegameisG.And2knowsthat1knowsthatthegameisG,1knowsthat2knowsthat1knowsthatthegameisG.And2knowsthat1knowsthat2knowsthatthegameisG
andsoonandsoon.“Almostcommonknowledge”:notsoonandsoon,the“knows”arefinite.4IntroduceanexampleTwoplayers,1and2,areinvolvedinacoordinationproblem.EachhastochoosebetweentwoactionsAandB.Therearetwopossiblestatesofnature,aandb.Eachofthestatesisassociatedwithapayoffmatrixasfollows:TheGameGa21AABBMM0000-L-LStatea,probability1-pTheGameGb2AABB00MM00-LStateb,probabilityp1-LL>M>0,p<1/25Both1and2knowsaboutwhichstatearetheyin,stateaorstateb.Andthe“knows”aresoonandsoon.So,iftheyareinstatea,theplayers’beststrategicbehaviorsaretocoordinate,bothchooseA.iftheyareinstateb,theplayers’beststrategicbehaviorsaretocoordinate,bothchooseB.CommonKnowledgeintheExample:6AlmostCommonknowledgeintheexample1.Theinformationaboutthestateofnatureisknowninitiallyonlytoplayer1.————useElectronicMailtosetup2.Thetwoplayersarelocatedattwodifferentsitesandtheycommunicateonlybyelectronicmailsignals.
Dueto"technicaldifficulties"thereisa"small"probabilitye>0,thatthemessagedoesnotarriveatitsdestination.3.Theelectronicmailnetworkissetuptosendaconfirmationautomaticallyifanymessagesreceived,includingnotonlytheconfirmationoftheinitialmessagebutaconfirmationoftheconfirmation;andsoon.7DemonstratetheElectronicMailSystem1.itisassumedthat,whenplayer1getstheinformationthatthestateofnatureisb,hiscomputerautomaticallysendsamessagetoplayer2andthenplayer2'scomputerconfirmsthemessageandthenplayer1'scomputerconfirmstheconfirmationandsoon.
2.Ifamessagedoesnotarrive,thenthecommunicationstops.3.Nomessageissentifthestateofnatureisa.4.Attheendofthecommunicationphasethescreendisplaystotheplayerthenumberofmessageshismachinehassent.LetT,beavariableforthenumberofmessagesi'scomputersent(thenumberoni'sscreen).8DemonstratetheElectronicMailSystemIfthestateisa,nomessagewillbesent.T1=0,T2=0Ifthestateisb,111222……9Ifthetwomachinesexchangeaninfinitenumberofmessages,thenwemaysaythatthetwoplayershavecommonknowledgethatthegameisGb.
However,sinceonlyafinitenumberofmessagesaretransferred,theplayersneverhavecommonknowledgethatthegametheyplayisGb。Inthecommonknowledgesituation,beststrategicbehaviorsare(B,B)Whatarebeststrategicbehaviorsunderthe“Almostknowledgesituation??Aretheythesameasthecommonknowledge’sones?“Almostcommonknowledge”situationissetup!10TheAnalysisoftheElectronicMailGame
T,beavariableforthenumberofmessagesi'scomputersent(thenumberoni'sscreen).(T1,T2)=(0,0),(n+1,n)or(n+1,n+1)Defineplayeri'sstrategyintheelectronicmailgame,Sitobeafunctionfromthesetofnaturalnumbers0,1,2,...intotheactionspace(A,B).ThenSi(t)isinterpretedasi'sactionifhismachinesenttmessages.i'sstrategydependsonTi11TheAnalysisoftheElectronicMailGame
PROPOSITION1:ThereisonlyoneNashequilibriuminwhichplayer1playsAinthestateofnaturea.InthisequilibriumtheplayersplayAindependentlyofthenumberofmessagessent.Let(S1,S2)beaNashequilibriumsuchthatS1(0)=A.Wewillprovebyinduction(歸納法)thatS1(t)=S2(t)=Aforallt.12IfT2=0thenplayer2didnotgetamessage.Heknowsthatitmightbebecauseplayer1didnotsendhimamessage(thiscouldoccurwithprobability1-p)(2)amessagewassentbutdidnotarrive(thishappenswithprobabilitype).Inthefirstcase,player1playsA(S1(0)=A).Ifplayer2playsA,then,player2'sexpectedpayoffisatleast;[(I-p)M+pe0]/[(1-p)+pe]ifheplaysBhegetsatmost[-L(1-p)+peM]/[(l-p)+pe].Thereforeitisstrictlyoptimalfor2toplayA,thatisS2(0)=A.TheAnalysisoftheElectronicMailGame13TheAnalysisoftheElectronicMailGame
Assumption:forallTi<t,players1and2playAinequilibrium.AssumeT1=t.Player1isuncertainwhether:T2=t(inthecasewhereplayer2receivedthetthmessagebut2'stthmessagewaslost)p=(1-e)e/[e+(1-e)e]>1/2.T2=t-1(inthecasewhere2didnotreceivethetthmessage).
z=e/[e+(1-e)e]>1/2.
Itismorelikelythatplayer1‘slastmessagedidnotarrivethanthatplayer2gotthemessage.Example,T1=1,how???14TheAnalysisoftheElectronicMailGameBytheinductiveassumption,player1assessesthat,ifT2=t-1,player2willplayA.Ifplayer1choosesB,playerl'sexpectedpayoffisatmostz(-L)+(1-z)MifhechoosesA,thenhisutilityis0.Give
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025冕寧縣彝海鎮(zhèn)彝海村城鄉(xiāng)建設用地增減掛鉤試點項目附屬工程勞務合同
- 上海外國語大學《鐵路站場及樞紐》2023-2024學年第一學期期末試卷
- 2025醫(yī)院采購合同錦集
- 2025解除或終止勞動合同備案書
- 2025汽車用品銷售合同模板
- 文學講座報告范文
- 上海師范大學天華學院《勞動法與社會保障法》2023-2024學年第一學期期末試卷
- 醫(yī)院檢驗報告范文大全
- 上海商學院《信號分析與處理實驗》2023-2024學年第一學期期末試卷
- 2025廣告發(fā)布委托合同書樣本
- 2024年企業(yè)年度營銷策劃合同
- 第28課 改革開放和社會主義現(xiàn)代化建設的巨大成就 課件-高一統(tǒng)編版2019必修中外歷史綱要上冊
- 中級計量經濟學知到智慧樹章節(jié)測試課后答案2024年秋浙江工業(yè)大學
- 2024全固態(tài)電池產業(yè)研究:全固態(tài)電池即將迎來量產元年
- 【MOOC】大學英語綜合教程(中級)-華中農業(yè)大學 中國大學慕課MOOC答案
- 營銷中心2024年規(guī)劃
- 教科版二年級上冊科學期末試卷及答案
- 中國地理(廣州大學)智慧樹知到期末考試答案章節(jié)答案2024年廣州大學
- 2024浙江省旅游投資集團總部管理人員招聘筆試參考題庫附帶答案詳解
- 貴州省黔東南州2022-2023學年八年級上學期期末文化水平測試數(shù)學試卷(含答案)
- GB∕T 12810-2021 實驗室玻璃儀器 玻璃量器的容量校準和使用方法
評論
0/150
提交評論