版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.322.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.3.已知函數(shù),,的零點分別為,,,則()A. B.C. D.4.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.5.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.46.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件7.設(shè),集合,則()A. B. C. D.8.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.9.已知中,,則()A.1 B. C. D.10.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.11.已知函數(shù),則()A. B. C. D.12.函數(shù)fxA. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量與的夾角為,,,則________.14.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.若,則=______,=______.16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?18.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.19.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.20.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時,求的零點;(2)當(dāng)時,證明:.21.(12分)已知函數(shù),其中.(1)當(dāng)時,求在的切線方程;(2)求證:的極大值恒大于0.22.(10分)某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤不少于4800元的概率.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
計算,再計算真子集個數(shù)得到答案.【題目詳解】,故真子集個數(shù)為:.故選:.【答案點睛】本題考查了集合的真子集個數(shù),意在考查學(xué)生的計算能力.2.A【答案解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【題目詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標(biāo)表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【答案點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.3.C【答案解析】
轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【題目詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【答案點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.4.D【答案解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【題目詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【答案點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.5.B【答案解析】
因為圓與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【題目詳解】請在此輸入詳解!6.B【答案解析】
由數(shù)量積的定義可得,為實數(shù),則由可得,根據(jù)共線的性質(zhì),可判斷;再根據(jù)判斷,由等價法即可判斷兩命題的關(guān)系.【題目詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【答案點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.7.B【答案解析】
先化簡集合A,再求.【題目詳解】由得:,所以,因此,故答案為B【答案點睛】本題主要考查集合的化簡和運算,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.8.A【答案解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【題目詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【答案點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).9.C【答案解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【題目詳解】,,.故選:C.【答案點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.10.B【答案解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【題目詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【答案點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.11.A【答案解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【題目詳解】依題意,.故選:A【答案點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.12.A【答案解析】
由f12=e-14>0排除選項D;【題目詳解】由f12=e-14>0,可排除選項D,f-1=-e【答案點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→0二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
根據(jù)已知求出,利用向量的運算律,求出即可.【題目詳解】由可得,則,所以.故答案為:【答案點睛】本題考查向量的模、向量的數(shù)量積運算,考查計算求解能力,屬于基礎(chǔ)題.14.【答案解析】
將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進而比較得到的最大值.【題目詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【答案點睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15.10【答案解析】
①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【題目詳解】①由題:,則;②由①可得:.故答案為:①1,②0【答案點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.16.【答案解析】
將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【題目詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【答案點睛】本題考查在等比數(shù)列中由前n項和關(guān)系求公比,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),定義域是.(2)百萬【答案解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【題目詳解】以為原點,直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時,,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最?。睿?,設(shè)銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【答案點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.18.(1)見解析(2)見解析【答案解析】
(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【題目詳解】解:(1)證明:因為,當(dāng)時,,,所以在區(qū)間遞減;當(dāng)時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因為,所以,方程關(guān)于的方程在有兩個零點,由的圖象可知,,即.【答案點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點存在性定理確定參數(shù)范圍,屬于難題.19.(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【答案解析】
(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【題目詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【答案點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.20.(1)見解析;(2)證明見解析.【答案解析】
當(dāng)時,求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計算即為導(dǎo)函數(shù)的零點;
當(dāng)時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【題目詳解】(1)的定義域為當(dāng)時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當(dāng)時,,①若,則,所以成立,②若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【答案點睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.21.(1)(2)證明見解析【答案解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【題目詳解】(1),當(dāng)時,,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時,恒成立,此時函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【答案點睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.22.(1),眾數(shù)為150;(2);(3)【答案解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個開學(xué)季內(nèi)市場需求量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲泔水回收與環(huán)保設(shè)施投資合同3篇
- 二零二五年礦山土地及資源使用權(quán)轉(zhuǎn)讓合同3篇
- 二零二五版白糖進口許可證申請代理服務(wù)合同下載2篇
- 二零二五年度駕駛員押運員安全責(zé)任及培訓(xùn)合同3篇
- 二零二五版企事業(yè)單位節(jié)能環(huán)保辦公電腦采購合同2篇
- 二零二五版電子商務(wù)平臺借款及庫存商品質(zhì)押合同3篇
- 二零二五年紡織原料市場調(diào)研與分析合同2篇
- 小區(qū)下水管網(wǎng)清理疏通承包合同(2篇)
- 二零二五版房產(chǎn)買賣合同含抵押權(quán)轉(zhuǎn)移及貸款利率協(xié)商協(xié)議0183篇
- 2025年度農(nóng)業(yè)科技推廣財產(chǎn)贈與合同3篇
- HSK標(biāo)準(zhǔn)教程5上-課件-L1
- 人教版五年級下冊數(shù)學(xué)預(yù)習(xí)單、學(xué)習(xí)單、檢測單
- JC-T 746-2023 混凝土瓦標(biāo)準(zhǔn)規(guī)范
- 如何落實管業(yè)務(wù)必須管安全
- 四年級上冊三位數(shù)乘除兩位數(shù)計算題
- 《水電工程招標(biāo)設(shè)計報告編制規(guī)程》
- 2023年甘肅蘭州中考道德與法治試題及答案
- 生產(chǎn)工廠管理手冊
- 項目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓(xùn)課件
- 2023機器人用精密減速器重復(fù)定位精度測試方法
評論
0/150
提交評論