版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知,且α是第四象限角,那么的值是()A. B.-C.± D.2.已知是定義在上的偶函數(shù),那么的最大值是()A.0 B.C. D.13.已知函數(shù)是定義在在上的奇函數(shù),且當時,,則函數(shù)的零點個數(shù)為()個A.2 B.3C.6 D.74.與-2022°終邊相同的最小正角是()A.138° B.132°C.58° D.42°5.已知命題,,命題,,則下列命題中為真命題的是()A. B.C. D.6.若冪函數(shù)的圖象經(jīng)過點,則的值為()A. B.C. D.7.設函數(shù)的圖象為,關于點A(2,1)的對稱圖象為,若直線y=b與有且僅有一個公共點,則b的值為A.0 B.-4C.0或4 D.0或-48.“,”的否定是()A., B.,C., D.,9.要得到函數(shù)的圖象,只需的圖象A.向左平移個單位,再把各點的縱坐標伸長到原來的倍(橫坐標不變)B.向左平移個單位,再把各點的縱坐標縮短到原來的倍(橫坐標不變)C.向左平移個單位,再把各點的縱坐標伸長到原來的倍(橫坐標不變)D.向左平移個單位,再把各點的縱坐標伸長到原來的倍(橫坐標不變)10.函數(shù)在區(qū)間上的最大值是A.1 B.C. D.1+二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.要制作一個容器為4,高為無蓋長方形容器,已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是_______(單位:元)12.設函數(shù),若函數(shù)在上的最大值為M,最小值為m,則______13.已知向量、滿足:,,,則_________.14.函數(shù)的定義域為__________________.15.已知點是角終邊上任一點,則__________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.求下列各式的值:(1);(2)17.已知圓的圓心坐標為,直線被圓截得的弦長為.(1)求圓的方程;(2)求經(jīng)過點且與圓C相切的直線方程.18.已知函數(shù),,將圖象向右平移個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式,并求在上的單調(diào)遞增區(qū)間;(2)若函數(shù),求的周期和最大值.19.(1)已知,求的值;(2)已知,,求的值.20.定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)當,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍21.已知(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當時,函數(shù)的值域為,求實數(shù)的范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】由誘導公式對已知式子和所求式子進行化簡即可求解.【詳解】根據(jù)誘導公式:,所以,,故.故選:B【點睛】誘導公式的記憶方法:奇變偶不變,符號看象限.2、C【解析】∵f(x)=ax2+bx是定義在[a-1,2a]上偶函數(shù),∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故選C.3、D【解析】作出函數(shù),和圖象,可知當時,的零點個數(shù)為3個;再根據(jù)奇函數(shù)的對稱性,可知當時,也有3個零點,再根據(jù),由此可計算出函數(shù)的零點個數(shù).【詳解】在同一坐標系中作出函數(shù),和圖象,如下圖所示:由圖象可知,當時,的零點個數(shù)為3個;又因為函數(shù)和均是定義在在上的奇函數(shù),所以是定義在在上的奇函數(shù),根據(jù)奇函數(shù)的對稱性,可知當時,的零點個數(shù)也為3個,又,所以也是零點;綜上,函數(shù)的零點個數(shù)一共有7個.故選:D.4、A【解析】根據(jù)任意角的周期性,將-2022°化為,即可確定最小正角.【詳解】由-2022°,所以與-2022°終邊相同的最小正角是138°.故選:A5、D【解析】先判斷命題的真假,再利用復合命題的真假判斷得解.【詳解】解:方程的,故無解,則命題p為假;而,故命題q為真;故命題、、均為假命題,為真命題.故選:D6、C【解析】由已知可得,即可求得的值.【詳解】由已知可得,解得.故選:C.7、C【解析】先設圖像上任一點以及P關于點的對稱點,根據(jù)點關于點對稱的性質(zhì),用p的坐標表示的坐標,再把的坐標代入f(x)的解析式進行整理,求出圖象的解析式,通過對解析式值域的分析,再結(jié)合直線y=b與有且僅有一個公共點,來確定未知量b的值?!驹斀狻吭O圖像上任一點,且P關于點的對稱點,則有,解得,又點在函數(shù)的圖像上,則有,那么圖像的函數(shù)為,當時,,,當且僅當時取到等號,此時取到最小值4,直線y=b與只有一個公共點,故b=4,同理當時,,,即,此時取到最大值0,當且僅當x=3時取到等號,直線y=b與只有一個公共點,故b=0.綜上,b的值為0或4.故選:C【點睛】利用基本不等式求出函數(shù)最值時,要注意函數(shù)定義域是否包含取等點,本題是一道函數(shù)綜合題8、C【解析】利用含有一個量詞的命題的否定的定義求解即可【詳解】“,”的否定是“,,”故選:C9、D【解析】先將函數(shù)的解析式化為,再利用三角函數(shù)圖象的變換規(guī)律得出正確選項.【詳解】,因此,將函數(shù)的圖象向左平移個單位,再把各點的縱坐標伸長到原來的倍(橫坐標不變),可得到函數(shù)的圖象,故選D.【點睛】本題考查三角函數(shù)的圖象變換,處理這類問題的要注意以下兩個問題:(1)左右平移指的是在自變量上變化了多少;(2)變換時兩個函數(shù)的名稱要保持一致.10、C【解析】由,故選C.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、160【解析】設底面長方形的長寬分別為和,先求側(cè)面積,進一步求出總的造價,利用基本不等式求出最小值.【詳解】設底面長方形的長寬分別為和,則,所以總造價當且僅當?shù)臅r區(qū)到最小值則該容器的最低總造價是160.故答案為:160.12、2【解析】令,證得為奇函數(shù),從而可得在的最大值和最小值之和為0,進而可求出結(jié)果.【詳解】設,定義域為,則,所以,即,所以為奇函數(shù),所以在的最大值和最小值之和為0,令,則因為,所以函數(shù)的最大值為,最小值為,則,∴故答案為:2.13、.【解析】將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運算律可得出結(jié)果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.14、【解析】由,解得,所以定義域為考點:本題考查定義域點評:解決本題關鍵熟練掌握正切函數(shù)的定義域15、##【解析】將所求式子,利用二倍角公式和平方關系化為,然后由商數(shù)關系弦化切,結(jié)合三角函數(shù)的定義即可求解.【詳解】解:因為點是角終邊上任一點,所以,所以,故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)-2;(2)18.【解析】(1)利用對數(shù)的運算性質(zhì)化簡求值即可.(2)由有理數(shù)指數(shù)冪與根式的關系及指數(shù)冪的運算性質(zhì)化簡求值.【小問1詳解】原式【小問2詳解】原式17、(1);(2)和.【解析】(1)根據(jù)圓心坐標設圓的標準方程,結(jié)合點到直線的距離公式求出圓的半徑即可.(2)當切線斜率不存在時滿足題意;當切線斜率存在時,設切線方程,結(jié)合點到直線的距離公式和圓心到直線的距離為半徑,計算求出直線斜率即可.【詳解】(1)設圓的標準方程為:圓心到直線的距離:,則圓的標準方程:(2)①當切線斜率不存在時,設切線:,此時滿足直線與圓相切.②當切線斜率存在時,設切線:,即則圓心到直線的距離:.解得:,即則切線方程為:綜上,切線方程為:和18、(1),增區(qū)間是(2)周期為,最大值為.【解析】(1)由圖象平移寫出的解析式,根據(jù)余弦函數(shù)的性質(zhì)直接確定單調(diào)增區(qū)間.(2)應用二倍角正弦公式可得,結(jié)合正弦型函數(shù)的性質(zhì)求周期和最大值.【小問1詳解】由題設,,而在上遞減,上遞增,所以的單調(diào)增區(qū)間是.【小問2詳解】由(1)有,所以,最小正周期為,最大值為,此時.綜上,周期為,最大值為.19、(1);(2)【解析】(1)根據(jù)題意,構(gòu)造齊次式求解即可;(2)根據(jù),并結(jié)合求解即可.【詳解】解:(1)因為所以,(2)因為,所以,因為,所以,所以所以所以20、(1)值域為(3,+∞);不是有界函數(shù),詳見解析(2)【解析】(1)當a=1時,f(x)=1+因為f(x)在(-∞,0)上遞減,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域為(3,+∞),故不存在常數(shù)M>0,使|f(x)|≤M成立,所以函數(shù)f(x)在(-∞,0)上不是有界函數(shù).(2)由題意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,設2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,設1≤t1<t2,h(t1)-h(huán)(t2)=>0,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上遞減,p(t)在[1,+∞)上遞增,h(t)在[1,+∞)上的最大值為h(1)=-5,p(t)在[1,+∞)上的最小值為p(1)=1,所以實數(shù)a的取值范圍為[-5,1]21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024簡單個人房屋租賃合同書
- 2025個人房屋租賃合同樣書
- 標準二手寫字樓買賣合同6篇
- 精準醫(yī)療的基石實時超聲科案例分析
- 視頻編輯初級教程制作專業(yè)影音作品
- 課題申報參考:可行能力視角下進城農(nóng)民農(nóng)村集體經(jīng)濟組織權(quán)益的保障機制重構(gòu)研究
- 2024年AB膠項目資金需求報告
- 科技產(chǎn)品在小紅書的營銷策略研究
- 二零二五年度工業(yè)廠房租賃安全風險評估與管理合同3篇
- 二零二五年度電子商務平臺交易催收保密合同2篇
- 圖像識別領域自適應技術(shù)-洞察分析
- 個體戶店鋪租賃合同
- 禮盒業(yè)務銷售方案
- 二十屆三中全會精神學習試題及答案(100題)
- 小學五年級英語閱讀理解(帶答案)
- 仁愛版初中英語單詞(按字母順序排版)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項目可行性研究報告編制標準
- 小學一年級拼音天天練
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- 保安部工作計劃
評論
0/150
提交評論