版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
13/142022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),小數(shù)記錄法的數(shù)據(jù)V和五分記錄法的數(shù)據(jù)L滿足,已知某同學視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)約為()(注:)A.0.6 B.0.8C.1.2 D.1.52.的值是A. B.C. D.3.定義在上的奇函數(shù)滿足,且當時,,則()A. B.2C. D.4.形如的函數(shù)因其函數(shù)圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)(且)有最小值,則當時的“囧函數(shù)”與函數(shù)的圖象交點個數(shù)為A. B.C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體的最長棱為()A.4 B.C. D.26.函數(shù)的最小正周期是()A. B.C. D.37.已知A(3,1),B(-1,2),若∠ACB的平分線方程為y=x+1,則AC所在的直線方程為()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=08.某同學用“五點法”畫函數(shù)在一個周期內(nèi)的簡圖時,列表如下:0xy0200則的解析式為()A. B.C D.9.已知,則()A. B.C. D.10.化簡
的值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則___________.12.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由13.經(jīng)過點且在軸和軸上的截距相等的直線的方程為__________14.已知,,則的最大值為______;若,,且,則______.15.已知是定義在上的奇函數(shù),當時,,則時,__________16.下面有5個命題:①函數(shù)的最小正周期是②終邊在軸上的角的集合是③在同一坐標系中,函數(shù)的圖象和函數(shù)的圖象有3個公共點④把函數(shù)的圖象向右平移得到的圖象⑤函數(shù)在上是減函數(shù)其中,真命題的編號是___________(寫出所有真命題的編號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知不等式的解集是(1)若且,求的取值范圍;(2)若,求不等式的解集18.已知函數(shù)(是常數(shù))是奇函數(shù),且滿足.(1)求的值;(2)試判斷函數(shù)在區(qū)間上的單調(diào)性并用定義證明.19.已知點,圓(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值20.已知全集,集合,(1)當時,求;(2)如果,求實數(shù)的取值范圍21.通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標準地震”的振幅(使用標準地震振幅是為了修正測震儀距實際震中的距離造成的偏差)(1)假設在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標準地震的振幅是0.001,計算這次地震的震級(精確到0.1);(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?(以下數(shù)據(jù)供參考:,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】當時,即可得到答案.【詳解】由題意可得當時故選:B2、B【解析】利用誘導公式求解.【詳解】解:由誘導公式得,故選:B.3、D【解析】根據(jù)題意,由,分析可得,即可得函數(shù)的周期為4,則有,由函數(shù)的解析式以及奇偶性可得的值,即可得答案【詳解】解:根據(jù)題意,函數(shù)滿足,即,則函數(shù)的周期為4,所以又由函數(shù)為奇函數(shù),則,又由當,時,,則;則有;故選:【點睛】本題考查函數(shù)奇偶性、周期性的應用,注意分析得到函數(shù)的周期,屬于中檔題4、C【解析】當時,,而有最小值,故.令,,其圖像如圖所示:共4個不同的交點,選C.點睛:考慮函數(shù)圖像的交點的個數(shù),關(guān)鍵在于函數(shù)圖像的正確刻畫,注意利用函數(shù)的奇偶性來簡化圖像的刻畫過程.5、B【解析】根據(jù)三視圖得到幾何體的直觀圖,然后結(jié)合圖中的數(shù)據(jù)計算出各棱的長度,進而可得最長棱【詳解】由三視圖可得,該幾何體是如圖所示的四棱錐,底面是邊長為2的正方形,側(cè)面是邊長為2的正三角形,且側(cè)面底面根據(jù)圖形可得四棱錐中的最長棱為和,結(jié)合所給數(shù)據(jù)可得,所以該四棱錐的最長棱為故選B【點睛】在由三視圖還原空間幾何體時,要結(jié)合三個視圖綜合考慮,根據(jù)三視圖表示的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線、不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以主視圖和俯視圖為主,結(jié)合左視圖進行綜合考慮.熟悉常見幾何體的三視圖,能由三視圖得到幾何體的直觀圖是解題關(guān)鍵.考查空間想象能力和計算能力6、A【解析】根據(jù)解析式,由正切函數(shù)的性質(zhì)求最小正周期即可.【詳解】由解析式及正切函數(shù)的性質(zhì),最小正周期.故選:A.7、C【解析】設點A(3,1)關(guān)于直線的對稱點為,則,解得,即,所以直線的方程為,聯(lián)立解得,即,又,所以邊AC所在的直線方程為,選C.點睛:本題主要考查了直線方程的求法,屬于中檔題.解題時要結(jié)合實際情況,準確地進行求解8、D【解析】由表格中的五點,由正弦型函數(shù)的性質(zhì)可得、、求參數(shù),即可寫出的解析式.【詳解】由表中數(shù)據(jù)知:且,則,∴,即,又,可得.∴.故選:D.9、D【解析】先求出,再分子分母同除以余弦的平方,得到關(guān)于正切的關(guān)系式,代入求值.【詳解】由得,,所以故選:D10、C【解析】根據(jù)兩角和的余弦公式可得:,故答案為C.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】由已知結(jié)合兩角和的正切求解【詳解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案為1【點睛】本題考查兩角和的正切公式的應用,是基礎的計算題12、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復合函數(shù)同增異減的性質(zhì)求解對應的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關(guān)于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.13、或【解析】根據(jù)題意將問題分直線過原點和不過原點兩種情況求解,然后結(jié)合待定系數(shù)法可得到所求的直線方程【詳解】(1)當直線過原點時,可設直線方程為,∵點在直線上,∴,∴直線方程為,即(2)當直線不過原點時,設直線方程,∵點在直線上,∴,∴,∴直線方程為,即綜上可得所求直線方程為或故答案為或【點睛】在求直線方程時,應先選擇適當形式的直線方程,并注意各種形式的方程所適用的條件,由于截距式不能表示與坐標軸垂直或經(jīng)過原點的直線,故在解題時若采用截距式,應注意分類討論,判斷截距是否為零,分為直線過原點和不過原點兩種情況求解.本題考查直線方程的求法和分類討論思想方法的運用14、①.14②.10【解析】根據(jù)數(shù)量積的運算性質(zhì),計算的平方即可求出最大值,兩邊平方,可得,計算的平方即可求解.【詳解】,當且僅當同向時等號成立,所以,即的最大值為14,由兩邊平方可得:,所以,所以,即.故答案為:14;10【點睛】本題主要考查了數(shù)量積的運算性質(zhì),數(shù)量積的定義,考查了運算能力,屬于中檔題.15、【解析】∵函數(shù)f(x)為奇函數(shù)∴f(-x)=-f(x)∵當x>0時,f(x)=log2x∴當x<0時,f(x)=-f(-x)=-log2(-x).故答案為.點睛:本題根據(jù)函數(shù)為奇函數(shù)可推斷出f(-x)=-f(x)進而根據(jù)x>0時函數(shù)的解析式即可求得x<0時,函數(shù)的解析式16、①④【解析】①,正確;②錯誤;③,和在第一象限無交點,錯誤;④正確;⑤錯誤.故選①④三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)且知道滿足不等式,不滿足不等式,解出即可得出答案(2)根據(jù)知道是方程的兩個根,利用韋達定理求出a值,再帶入不等式,解出不等式即可【詳解】(1)(2)∵,∴是方程的兩個根,∴由韋達定理得解得∴不等式即為:其解集為【點睛】本題考查元素與集合的關(guān)系、一元二次不等式與一元二次等式的關(guān)系,屬于基礎題18、(1),(2)在區(qū)間(0,0.5)上是單調(diào)遞減的【解析】(Ⅰ)∵函數(shù)是奇函數(shù),則即∴2分由得解得∴,.6分(Ⅱ)解法1:由(Ⅰ)知,∴,8分當時,10分∴,即函數(shù)在區(qū)間上為減函數(shù).12分[解法2:設,則==10分∵∴,,∴,即∴函數(shù)在區(qū)間上為減函數(shù).12分].19、(1)或.(2)【解析】(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點M的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點M的圓的切線方程為或(2)∵圓心到直線的距離為,∴,解得【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.20、(1)或;(2)(-∞,2).【解析】先解出集合A(1)時,求出B,再求和;(2)把轉(zhuǎn)化為,分和進行討論.【詳解】(1)當時,,∴∴或.(2)∵,∴.當時,有,解得:;當時,因為,只需,解得:;綜上:,故實數(shù)的取值范圍(-∞,2).【點睛】(1)集合的交并補運算:①離散型的數(shù)集用韋恩圖;②連續(xù)型的數(shù)集用數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《計算機病毒與木馬》課件
- 睪丸觸痛的臨床護理
- 丹毒絲菌病的臨床護理
- 堵奶的健康宣教
- 維生素營養(yǎng)障礙的健康宣教
- JJF(陜) 113-2024 低頻電磁場測量儀校準規(guī)范
- 函數(shù)復習課課件
- 新課程標準學習與落實計劃
- 數(shù)字在線服務相關(guān)項目投資計劃書范本
- 新型膜材料及其裝置行業(yè)相關(guān)投資計劃提議
- 機械工業(yè)工程建設項目設計文件編制標準
- 《思想道德與法治》復習題(一)
- 《物聯(lián)網(wǎng)工程導論》課件 項目5 智慧小區(qū)系統(tǒng)集成架構(gòu)設計(6學時)
- 2024高考政治真題-哲學-匯集(解析版)
- 乒乓球俱樂部合伙協(xié)議
- 小學二年級科學經(jīng)典習題及答案
- 急診與災難醫(yī)學智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學
- 酒店管理概論智慧樹知到期末考試答案章節(jié)答案2024年海南熱帶海洋學院
- 消化內(nèi)科健康教育手冊
- 學校關(guān)于意識形態(tài)工作總結(jié)
- 幼兒園大班師德師風案例及分析
評論
0/150
提交評論