版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//24MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr25Sounds-fingerprints25Sounds-fingerprints26IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube34ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianDiUnderstandingSemanticsUnderstandingSemantics人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Demographics–MSAdCenterLabDemographics–MSAdCenterLabCommercialIntentionsofGivenWebsiteCommercialIntentionsofGiven人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Ifyouwanttosellone,whatisthebestprice?N97(NokiaPhone)N97(NokiaPhone)MinorityGameEIFarolBarMinorityGameModelApplicationInRealworldTherearemorethan100IrishmusicloversbutElFarolhasonly60seats.Theshowisenjoyableonlywhenfewerthan60peopleshowup.Everypeopleshoulddecideweeklywhethergotothebartoenjoylivemusicintheriskofstayinginacrowdplaceorstayathome.Therulesaresimple:afinitenumberofplayershavetochoosebetweentwosides;whoeverendsupintheminoritysideisawinner.SimplifiedfrommarketaimingtoanalyzecomplexfinancialmarketMinorityGameEIFarolBarMinorCollectiveBehaviorDecompositionCollectiveBehaviorDecompositSimulationResults(Li,MaandQin,2010)SimulationResults(Li,Maand人工智能詳解課件人工智能詳解課件YingMa,GuanyiLi,YingsaiDongandZengchangQin(2010),Minoritygamedataminingformarketpredictions,forStockMarketPredictions,toappearintheProceedingsofAAMAS2010.GuanyiLi,YingMa,YingsaiDongandZengchangQin(2010),Behaviorlearninginminoritygames,ToappearintheProceedingsofCARE2009.ZengchangQin,MarcusThintandZhihengHuang(2009),Rankinganswersbyhierarchicaltopicmodels,ProceedingsofIEA/AIE2009,LNCS5579,pp.103-112,Springer.ZhihengHuang,MarcusThintandZengchangQin(2008),Questionclassificationusingheadwordsandtheirhypernyms,TheProceedingsofConferenceonEmpiricalMethodsonNaturalLanguageProcessing,pp.927-936,ACL.ReferencesYingMa,GuanyiLi,YingsaiDoNon-academicNon-academicAcademicAIAcademicAIFuzzyLogicandLogicofScienceFuzzyLogicandLogicofScienNLP&ANNNLP&ANNGA,ALIFE&Multi-agentGA,ALIFE&Multi-agentWeb:orGoogle“ZengchangQin”formyLinkedInProfiles.ContactInformationWeb:orGoogThankyouverymuch!Anyquestions?人工智能詳解課件ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//93MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr94Sounds-fingerprints25Sounds-fingerprints95IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube103ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianD
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人教育培訓(xùn)機(jī)構(gòu)課程研發(fā)合同2篇
- 2025企業(yè)廠房融資租賃合同
- 2025年度個(gè)人留置車(chē)輛借款合同(車(chē)輛留置權(quán)保險(xiǎn)配套)2篇
- 2025年度出租車(chē)安全責(zé)任保險(xiǎn)服務(wù)合同4篇
- 個(gè)人抵押貸款協(xié)議模板(2024年修訂版)版
- 二零二五年度土地開(kāi)發(fā)承包借款合同標(biāo)準(zhǔn)格式3篇
- 二零二五年度承臺(tái)施工安全應(yīng)急救援預(yù)案合同4篇
- 二零二五年度車(chē)輛收費(fèi)員突發(fā)事件應(yīng)對(duì)與應(yīng)急預(yù)案協(xié)議材料4篇
- 二零二五年度陶瓷文化體驗(yàn)館代理合作協(xié)議3篇
- 二零二五年度拍賣(mài)企業(yè)信息安全保密合同
- 鏈家、貝殼專(zhuān)業(yè)租房協(xié)議、房屋租賃合同、房屋出租協(xié)議
- 2024年電力算力協(xié)同:需求、理念與關(guān)鍵技術(shù)報(bào)告-南網(wǎng)數(shù)研院(蔡田田)
- 云南省西雙版納傣族自治州(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版小升初模擬(上學(xué)期)試卷及答案
- 2024年新高考I卷數(shù)學(xué)高考試卷(原卷+答案)
- 遼寧中考英語(yǔ)2022-2024真題匯編-教師版-專(zhuān)題06 語(yǔ)篇填空
- 篝火晚會(huì)流程
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專(zhuān)家共識(shí)(2024版)解讀 課件
- 江蘇省無(wú)錫市2024年中考語(yǔ)文試卷【附答案】
- 五年級(jí)上冊(cè)小數(shù)脫式計(jì)算200道及答案
- 2024-2030年中國(guó)護(hù)肝解酒市場(chǎng)營(yíng)銷(xiāo)策略分析與未來(lái)銷(xiāo)售渠道調(diào)研研究報(bào)告
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
評(píng)論
0/150
提交評(píng)論