




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Goodisgood,butbettercarriesit.
精益求精,善益求善。Goodisgood,butbettercarriesit.
精益求精,善益求善。初中二級(jí)數(shù)學(xué)教案?jìng)湔n本備課本PAGEPAGE112備課本PAGE備課本(2010年—2011學(xué)年第一學(xué)期)學(xué)校富源縣農(nóng)廣校專業(yè)現(xiàn)代農(nóng)業(yè)課程數(shù)學(xué)年級(jí)2010級(jí)班次教師毛雄云南省農(nóng)業(yè)廣播電視學(xué)校編制
日期2010年4月11日上午下午晚上授課內(nèi)容簡(jiǎn)單的二元二次方程組教學(xué)時(shí)數(shù)6重點(diǎn)一元一次方程、一元二次方程及二元一次方程組的解法.難點(diǎn)掌握了用消元法解二元一次方程組.教學(xué)內(nèi)容及過程設(shè)計(jì)第一講簡(jiǎn)單的二元二次方程組一元一次方程、一元二次方程及二元一次方程組的解法,掌握了用消元法解二元一次方程組.高中新課標(biāo)必修2中學(xué)習(xí)圓錐曲線時(shí),需要用到二元二次方程組的解法.因此,本講講介紹簡(jiǎn)單的二元二次方程組的解法.含有兩個(gè)未知數(shù)、且含有未知數(shù)的項(xiàng)的最高次數(shù)是2的整式方程,叫做二元二次方程.由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組,或由兩個(gè)二元二次方程組組成的方程組,叫做二元二次方程組.一、由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組 一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組一般都可以用代入法求解.其蘊(yùn)含著轉(zhuǎn)化思想:將二元一次方程化歸為熟悉的一元二次方程求解.【例1】解方程組分析:由于方程(1)是二元一次方程,故可由方程(1),得,代入方程(2)消去.解:由(1)得:(3) 將(3)代入(2)得:,解得: 把代入(3)得:;把代入(3)得:. ∴原方程組的解是:.說明:(1)解由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組的步驟:①由二元一次方程變形為用表示的方程,或用表示的方程(3);②把方程(3)代入二元二次方程,得一個(gè)一元二次方程;③解消元后得到的一元二次方程;④把一元二次方程的根,代入變形后的二元一次方程(3),求相應(yīng)的未知數(shù)的 值;⑤寫出答案. (2)消,還是消,應(yīng)由二元一次方程的系數(shù)來(lái)決定.若系數(shù)均為整數(shù),那 么最好消去系數(shù)絕對(duì)值較小的,如方程,可以消去,變形 得,再代入消元. (3)消元后,求出一元二次方程的根,應(yīng)代入二元一次方程求另一未知數(shù)的值, 不能代入二元二次方程求另一未知數(shù)的值,因?yàn)檫@樣可能產(chǎn)生增根,這一點(diǎn) 切記. 【例2】解方程組分析:本題可以用代入消元法解方程組,但注意到方程組的特點(diǎn),可以把、看成是方程的兩根,則更容易求解.解:根據(jù)一元二次方程的根與系數(shù)的關(guān)系,把、看成是方程的兩根,解方程得:.∴原方程組的解是:.說明:(1)對(duì)于這種對(duì)稱性的方程組,利用一元二次方程的根與系數(shù)的關(guān)系構(gòu)造方程時(shí),未知數(shù)要換成異于、的字母,如. (2)對(duì)稱形方程組的解也應(yīng)是對(duì)稱的,即有解,則必有解.二、由兩個(gè)二元二次方程組成的方程組1.可因式分解型的方程組方程組中的一個(gè)方程可以因式分解化為兩個(gè)二元一次方程,則原方程組可轉(zhuǎn)化為兩個(gè)方程組,其中每個(gè)方程組都是由一個(gè)二元二次方程和一個(gè)二元一次方程組成.【例3】解方程組分析:注意到方程,可分解成,即得或,則可得到兩個(gè)二元二次方程組,且每個(gè)方程組中均有一個(gè)方程為二元一次方程.解:由(1)得: ∴或 ∴原方程組可化為兩個(gè)方程組: 用代入法解這兩個(gè)方程組,得原方程組的解是: 說明:由兩個(gè)二元二次方程組成的方程組中,有一個(gè)方程可以通過因式分解,化為兩個(gè)二元一次方程,則原方程組轉(zhuǎn)化為解兩個(gè)方程組,其中每一個(gè)方程組均有一個(gè)方程是二元一次方程.【例4】解方程組分析:本題的特點(diǎn)是方程組中的兩個(gè)方程均缺一次項(xiàng),我們可以消去常數(shù)項(xiàng),可得到一個(gè)二次三項(xiàng)式的方程.對(duì)其因式分解,就可以轉(zhuǎn)化為例3的類型.解:(1)–(2)得: 即 ∴ ∴原方程組可化為兩個(gè)二元一次方程組:. 用代入法解這兩個(gè)方程組,得原方程組的解是:. 說明:若方程組的兩個(gè)方程均缺一次項(xiàng),則消去常數(shù)項(xiàng),得到一個(gè)二元二次方程.此方程與原方程組中的任一個(gè)方程聯(lián)立,得到一個(gè)可因式分解型的二元二次方程組. 【例5】解方程組分析:(1)+(2)得:,(1)-(2)得:,分別分解(3)、(4)可得四個(gè)二元一次方程組.解:(1)+(2)得:, (1)-(2)得:. 解此四個(gè)方程組,得原方程組的解是: . 說明:對(duì)稱型方程組,如、都可以通過變形轉(zhuǎn)化為的形式,通過構(gòu)造一元二次方程求解.2.可消二次項(xiàng)型的方程組 【例6】解方程組分析:注意到兩個(gè)方程都有項(xiàng),所以可用加減法消之,得到一個(gè)二元一次方程,即轉(zhuǎn)化為由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組.解:(1)得: 代入(1)得:. 分別代入(3)得:. ∴原方程組的解是:. 說明:若方程組的兩個(gè)方程的二次項(xiàng)系數(shù)對(duì)應(yīng)成比例,則可用加減法消去二次項(xiàng),得到一個(gè)二元一次方程,把它與原方程組的任意一個(gè)方程聯(lián)立,解此方程組,即得原方程組的解. 二元二次方程組類型多樣,消元與降次是兩種基本方法,具體問題具體解決.日期2010年4月上午下午晚上授課內(nèi)容一元二次方程教學(xué)時(shí)數(shù)20重點(diǎn)1、一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題.2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法.學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程.難點(diǎn)一元二次方程2.本單元在教材中的地位與作用.教學(xué)內(nèi)容及過程設(shè)計(jì)第二講一元二次方程教學(xué)目標(biāo)1.知識(shí)與技能了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識(shí)解決問題.2.過程與方法(1)通過豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評(píng)分析,建立數(shù)學(xué)模型.根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念.(2)結(jié)合八冊(cè)上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等.(3)通過掌握缺一次項(xiàng)的一元二次方程的解法──直接開方法,導(dǎo)入用配方法解一元二次方程,又通過大量的練習(xí)鞏固配方法解一元二次方程.(4)通過用已學(xué)的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通過復(fù)習(xí)八年級(jí)上冊(cè)《整式》的第5節(jié)因式分解進(jìn)行知識(shí)遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它.(6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)模型,并用該模型解決實(shí)際問題.3.情感、態(tài)度與價(jià)值觀經(jīng)歷由事實(shí)問題中抽象出一元二次方程等有關(guān)概念的過程,使同學(xué)們體會(huì)到通過一元二次方程也是刻畫現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學(xué)們體會(huì)到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問題情景,使學(xué)生體會(huì)到建立數(shù)學(xué)模型解決實(shí)際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣.教學(xué)重點(diǎn)1.一元二次方程及其它有關(guān)的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問題.教學(xué)難點(diǎn)1.一元二次方程配方法解題.2.用公式法解一元二次方程時(shí)的討論.3.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型;方程解與實(shí)際問題解的區(qū)別.教學(xué)關(guān)鍵1.分析實(shí)際問題如何建立一元二次方程的數(shù)學(xué)模型.2.用配方法解一元二次方程的步驟.3.解一元二次方程公式法的推導(dǎo).課時(shí)劃分本單元教學(xué)時(shí)間約需16課時(shí),具體分配如下:22.1一元二次方程2課時(shí)22.2降次──解一元二次方程7課時(shí)22.3實(shí)際問題與一元二次方程5課時(shí)發(fā)現(xiàn)一元二次方程根與系數(shù)的關(guān)系2課時(shí)第1課時(shí)22.1一元二次方程教學(xué)內(nèi)容一元二次方程概念及一元二次方程一般式及有關(guān)概念.教學(xué)目標(biāo)了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目.1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.2.一元二次方程的一般形式及其有關(guān)概念.3.解決一些概念性的題目.4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來(lái)激發(fā)學(xué)生的學(xué)習(xí)熱情.重難點(diǎn)關(guān)鍵1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.教學(xué)過程一、復(fù)習(xí)引入
學(xué)生活動(dòng):列方程.問題(1)古算趣題:“執(zhí)竿進(jìn)屋”笨人執(zhí)竿要進(jìn)屋,無(wú)奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。有個(gè)鄰居聰明者,教他斜竿對(duì)兩角,笨伯依言試一試,不多不少剛抵足。借問竿長(zhǎng)多少數(shù),誰(shuí)人算出我佩服。如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,長(zhǎng)為_______尺,根據(jù)題意,得________.整理、化簡(jiǎn),得:__________.問題(2)如圖,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).如果假設(shè)AB=1,AC=x,那么BC=________,根據(jù)題意,得:________.整理得:_________.問題(3)有一面積為54m2的長(zhǎng)方形,將它的一邊剪短5m,另一邊剪短如果假設(shè)剪后的正方形邊長(zhǎng)為x,那么原來(lái)長(zhǎng)方形長(zhǎng)是________,寬是_____,根據(jù)題意,得:_______.整理,得:________.老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.二、探索新知學(xué)生活動(dòng):請(qǐng)口答下面問題.(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?(3)有等號(hào)嗎?還是與多項(xiàng)式一樣只有式子?老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.解:略注意:二次項(xiàng)、二次項(xiàng)系數(shù)、一次項(xiàng)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都包括前面的符號(hào).例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、鞏固練習(xí)教材P32練習(xí)1、2補(bǔ)充練習(xí):判斷下列方程是否為一元二次方程?(1)3x+2=5y-3(2)x2=4(3)3x2-=0(4)x2-4=(x+2)2(5)ax2+bx+c=0四、應(yīng)用拓展例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.證明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不論m取何值,該方程都是一元二次方程.練習(xí):1.方程(2a—4)x2—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為一元一次方程?2.當(dāng)m為何值時(shí),方程(m+1)x/4m/-4+27mx+5=0是關(guān)于的一元二次方程五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))本節(jié)課要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.六、布置作業(yè)1.教材P34習(xí)題22.11(2)(4)(6)、2.2.選用作業(yè)設(shè)計(jì).補(bǔ)充:若x2-2xm-1+3=0是關(guān)于x的一元二次方程,求m的值作業(yè)設(shè)計(jì)一、選擇題1.在下列方程中,一元二次方程的個(gè)數(shù)是().①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-=0A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)2.方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為().A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,63.px2-3x+p2-q=0是關(guān)于x的一元二次方程,則().A.p=1B.p>0C.p≠0D.p為任意實(shí)數(shù)二、填空題1.方程3x2-3=2x+1的二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為_________,常數(shù)項(xiàng)為_________.2.一元二次方程的一般形式是__________.3.關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是________.三、綜合提高題1.a(chǎn)滿足什么條件時(shí),關(guān)于x的方程a(x2+x)=x-(x+1)是一元二次方程?2.關(guān)于x的方程(2m2+m)xm+13.一塊矩形鐵片,面積為1m2,長(zhǎng)比寬多3m設(shè)鐵片的長(zhǎng)為x,列出的方程為x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道鐵片的長(zhǎng)到底是多少,下面是他的探索過程:第一步:x1234x2-3x-1-3-3所以,________<x<__________第二步:x3.4x2-3x-1-0.96-0.36所以,________<x<__________(1)請(qǐng)你幫小明填完空格,完成他未完成的部分;(2)通過以上探索,估計(jì)出矩形鐵片的整數(shù)部分為_______,十分位為______.課后反思第2課時(shí)22.1一元二次方程教學(xué)內(nèi)容1.一元二次方程根的概念;2.根據(jù)題意判定一個(gè)數(shù)是否是一元二次方程的根及其利用它們解決一些具體題目.教學(xué)目標(biāo)了解一元二次方程根的概念,會(huì)判定一個(gè)數(shù)是否是一個(gè)一元二次方程的根及利用它們解決一些具體問題.提出問題,根據(jù)問題列出方程,化為一元二次方程的一般形式,列式求解;由解給出根的概念;再由根的概念判定一個(gè)數(shù)是否是根.同時(shí)應(yīng)用以上的幾個(gè)知識(shí)點(diǎn)解決一些具體問題.重難點(diǎn)關(guān)鍵1.重點(diǎn):判定一個(gè)數(shù)是否是方程的根;2.難點(diǎn)關(guān)鍵:由實(shí)際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問題的根.教學(xué)過程一、復(fù)習(xí)引入學(xué)生活動(dòng):請(qǐng)同學(xué)獨(dú)立完成下列問題.問題1.前面有關(guān)“執(zhí)竿進(jìn)屋”的問題中,我們列得方程x2-8x+20=0列表:x1234567891011…x2-8x+20…問題2.前面有關(guān)長(zhǎng)方形的面積的問題中,我們列得方程x2+7x-44=0即x2+7x=44x123456…x2+7x…列表:
老師點(diǎn)評(píng)(略)二、探索新知提問:(1)問題1中一元二次方程的解是多少?問題2中一元二次方程的解是多少?(2)如果拋開實(shí)際問題,問題2中還有其它解嗎?老師點(diǎn)評(píng):(1)問題1中x=2與x=10是x2-8x+20=0的解,問題2中,x=4是x2+7x-44=0的解.(2)如果拋開實(shí)際問題,問題2中還有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回過頭來(lái)看:x2-8x+20=0有兩個(gè)根,一個(gè)是2,另一個(gè)是10,都滿足題意;但是,問題2中的x=-11的根不滿足題意.因此,由實(shí)際問題列出方程并解得的根,并不一定是實(shí)際問題的根,還要考慮這些根是否確實(shí)是實(shí)際問題的解.例1.下面哪些數(shù)是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一個(gè)數(shù)是否是方程的根,只要把其代入等式,使等式兩邊相等即可.解:將上面的這些數(shù)代入后,只有-2和-3滿足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的兩根.例2.若x=1是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的一個(gè)根,求代數(shù)式2007(a+b+c)的值練習(xí):關(guān)于x的一元二次方程(a-1)x2+x+a2-1=0的一個(gè)根為0,則求a的值點(diǎn)撥:如果一個(gè)數(shù)是方程的根,那么把該數(shù)代入方程,一定能使左右兩邊相等,這種解決問題的思維方法經(jīng)常用到,同學(xué)們要深刻理解.例3.你能用以前所學(xué)的知識(shí)求出下列方程的根嗎?(1)x2-64=0(2)3x2-6=0(3)x2-3x=0分析:要求出方程的根,就是要求出滿足等式的數(shù),可用直接觀察結(jié)合平方根的意義.解:略三、鞏固練習(xí)教材P33思考題練習(xí)1、2.四、應(yīng)用拓展例3.要剪一塊面積為150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm設(shè)長(zhǎng)為xcm,則寬為(x-5)cm列方程x(x-5)=150,即x2-5x-150=0請(qǐng)根據(jù)列方程回答以下問題:(1)x可能小于5嗎?可能等于10嗎?說說你的理由.(2)完成下表:x1011121314151617…x2-5x-150(3)你知道鐵片的長(zhǎng)x是多少嗎?分析:x2-5x-150=0與上面兩道例題明顯不同,不能用平方根的意義和八年級(jí)上冊(cè)的整式中的分解因式的方法去求根,但是我們可以用一種新的方法──“夾逼”方法求出該方程的根.解:(1)x不可能小于5.理由:如果x<5,則寬(x-5)<0,不合題意.x不可能等于10.理由:如果x=10,則面積x2-5x-150=-100,也不可能.(2)x1011121314151617……x2-5x-150-100-84-66-46-2402654……(3)鐵片長(zhǎng)x=15cm五、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng))本節(jié)課應(yīng)掌握:(1)一元二次方程根的概念;(2)要會(huì)判斷一個(gè)數(shù)是否是一元二次方程的根;(3)要會(huì)用一些方法求一元二次方程的根.(“夾逼”方法;平方根的意義)六、布置作業(yè)1.教材P34復(fù)習(xí)鞏固3、4綜合運(yùn)用5、6、7拓廣探索8、9.2.選用課時(shí)作業(yè)設(shè)計(jì).作業(yè)設(shè)計(jì)一、選擇題1.方程x(x-1)=2的兩根為().A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=aB.x1=b,x2=C.x1=a,x2=D.x1=a2,x2=b23.已知x=-1是方程ax2+bx+c=0的根(b≠0),則=().A.1B.-1C.0D.2二、填空題1.如果x2-81=0,那么x2-81=0的兩個(gè)根分別是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一個(gè)根是x=3,則m的值為________.3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________.三、綜合提高題1.如果x=1是方程ax2+bx+3=0的一個(gè)根,求(a-b)2+4ab的值.2.如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.3.在一次數(shù)學(xué)課外活動(dòng)中,小明給全班同學(xué)演示了一個(gè)有趣的變形,即在()2-2x+1=0,令=y,則有y2-2y+1=0,根據(jù)上述變形數(shù)學(xué)思想(換元法),解決小明給出的問題:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.課后反思第3課時(shí)22.2.1直接開平方法教學(xué)內(nèi)容運(yùn)用直接開平方法,即根據(jù)平方根的意義把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.教學(xué)目標(biāo)理解一元二次方程“降次”──轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.重難點(diǎn)關(guān)鍵1.重點(diǎn):運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程;領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想.2.難點(diǎn)與關(guān)鍵:通過根據(jù)平方根的意義解形如x2=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.教學(xué)過程一、復(fù)習(xí)引入學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題問題1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.問題1:根據(jù)完全平方公式可得:(1)164;(2)42;(3)()2.問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程于一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?二、探索新知上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?(學(xué)生分組討論)老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3即2t+1=3,2t+1=-3方程的兩根為t1=1,t2=--2例1:解方程:(1)(2x-1)2=5(2)x2+6x+9=2(3)x2-2x+4=-1分析:很清楚,x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接開平方,得:x+3=±即x+3=,x+3=-所以,方程的兩根x1=-3+,x2=-3-例2.市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m分析:設(shè)每年人均住房面積增長(zhǎng)率為x.一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2解:設(shè)每年人均住房面積增長(zhǎng)率為x,則:10(1+x)2=14.4(1+x)2=1.44直接開平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的兩根是x1=0.2=20%,x2=-2.2因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.三、鞏固練習(xí)教材P36練習(xí).補(bǔ)充題:如圖,在△ABC中,∠B=90°,點(diǎn)P從點(diǎn)B開始,沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始,沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果AB=6cm,BC=12cm,P、Q都從B點(diǎn)同時(shí)出發(fā),幾秒后△PBQ的面積等于8cm2?老師點(diǎn)評(píng):?jiǎn)栴}2:設(shè)x秒后△PBQ的面積等于8cm2則PB=x,BQ=2x依題意,得:x·2x=8x2=8根據(jù)平方根的意義,得x=±2即x1=2,x2=-2可以驗(yàn)證,2和-2都是方程x·2x=8的兩根,但是移動(dòng)時(shí)間不能是負(fù)值.所以2秒后△PBQ的面積等于8cm2.四、應(yīng)用拓展例3.某公司一月份營(yíng)業(yè)額為1萬(wàn)元,第一季度總營(yíng)業(yè)額為3.31萬(wàn)元,求該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率是多少?分析:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x,那么二月份的營(yíng)業(yè)額就應(yīng)該是(1+x),三月份的營(yíng)業(yè)額是在二月份的基礎(chǔ)上再增長(zhǎng)的,應(yīng)是(1+x)2.解:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x.那么1+(1+x)+(1+x)2=3.31把(1+x)當(dāng)成一個(gè)數(shù),配方得:(1+x+)2=2.56,即(x+)2=2.56x+=±1.6,即x+=1.6,x+=-1.6方程的根為x1=10%,x2=-3.1因?yàn)樵鲩L(zhǎng)率為正數(shù),所以該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為10%.五、歸納小結(jié)本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0),那么x=±轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解六、布置作業(yè)1.教材P45復(fù)習(xí)鞏固1、2.2.選用作業(yè)設(shè)計(jì):一、選擇題1.若x2-4x+p=(x+q)2,那么p、q的值分別是().A.p=4,q=2B.p=4,q=-2C.p=-4,q=2D.p=-4,q=-22.方程3x2+9=0的根為().A.3B.-3C.±3D.無(wú)實(shí)數(shù)根3.用配方法解方程x2-x+1=0正確的解法是().A.(x-)2=,x=±B.(x-)2=-,原方程無(wú)解C.(x-)2=,x1=+,x2=D.(x-)2=1,x1=,x2=-二、填空題1.若8x2-16=0,則x的值是_________.2.如果方程2(x-3)2=72,那么,這個(gè)一元二次方程的兩根是________.3.如果a、b為實(shí)數(shù),滿足+b2-12b+36=0,那么ab的值是_______.三、綜合提高題1.解關(guān)于x的方程(x+m)2=n.2.某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻長(zhǎng)25m),另三邊用木欄圍成,木欄長(zhǎng)40m.(1)雞場(chǎng)的面積能達(dá)到180m2嗎?能達(dá)到(2)雞場(chǎng)的面積能達(dá)到210m23.在一次手工制作中,某同學(xué)準(zhǔn)備了一根長(zhǎng)4米的鐵絲,由于需要,現(xiàn)在要制成一個(gè)矩形方框,并且要使面積盡可能大,你能幫助這名同學(xué)制成方框,并說明你制作的理由嗎?課后反思第4課時(shí)22.2.2配方法(1)教學(xué)內(nèi)容間接即通過變形運(yùn)用開平方法降次解方程.教學(xué)目標(biāo)理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的解題步驟.重難點(diǎn)關(guān)鍵1.重點(diǎn):講清“直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.2.難點(diǎn)與關(guān)鍵:不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?二、探索新知列出下面問題的方程并回答:(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?(2)能否直接用上面三個(gè)方程的解法呢?問題2:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有.(2)不能.既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化:x2+6x-16=0移項(xiàng)→x2+6x=16兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能使負(fù)值,所以場(chǎng)地的寬為2m,常為8m.像上面的解題方法,通過配成完全平方形式來(lái)解一元二次方程的方法,叫配方法.可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.例1.用配方法解下列關(guān)于x的方程(1)x2-8x+1=0(2)x2-2x-=0分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.解:略三、鞏固練習(xí)教材P38討論改為課堂練習(xí),并說明理由.教材P39練習(xí)12.(1)、(2).四、應(yīng)用拓展例3.如圖,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,點(diǎn)P、Q同時(shí)由A,B兩點(diǎn)出發(fā)分別沿AC、BC方向向點(diǎn)C勻速移動(dòng),它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半.分析:設(shè)x秒后△PCQ的面積為Rt△ABC面積的一半,△PCQ也是直角三角形.根據(jù)已知列出等式.解:設(shè)x秒后△PCQ的面積為Rt△ACB面積的一半.根據(jù)題意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合題意,舍去.所以2秒后△PCQ的面積為Rt△ACB面積的一半.五、歸納小結(jié)本節(jié)課應(yīng)掌握:左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.六、布置作業(yè)1.教材P45復(fù)習(xí)鞏固2.3(1)(2)2.選用作業(yè)設(shè)計(jì).一、選擇題1.將二次三項(xiàng)式x2-4x+1配方后得().A.(x-2)2+3B.(x-2)2-3C.(x+2)2+3D.(x+2)2-32.已知x2-8x+15=0,左邊化成含有x的完全平方形式,其中正確的是().A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-113.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左邊是一個(gè)關(guān)于x的完全平方式,則m等于().A.1B.-1C.1或9D.-1或9二、填空題
1.方程x2+4x-5=0的解是________.2.代數(shù)式的值為0,則x的值為________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若設(shè)x+y=z,則原方程可變?yōu)開______,所以求出z的值即為x+y的值,所以x+y的值為______.三、綜合提高題1.已知三角形兩邊長(zhǎng)分別為2和4,第三邊是方程x2-4x+3=0的解,求這個(gè)三角形的周長(zhǎng).2.如果x2-4x+y2+6y++13=0,求(xy)z的值.3.新華商場(chǎng)銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元,市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降50元時(shí),平均每天就能多售出4臺(tái),商場(chǎng)要想使這種冰箱的銷售利潤(rùn)平均每天達(dá)5000元,每臺(tái)冰箱的定價(jià)應(yīng)為多少元?課后反思第5課時(shí)22.2.2配方法(2)教學(xué)內(nèi)容給出配方法的概念,然后運(yùn)用配方法解一元二次方程.教學(xué)目標(biāo)了解配方法的概念,掌握運(yùn)用配方法解一元二次方程的步驟.通過復(fù)習(xí)上一節(jié)課的解題方法,給出配方法的概念,然后運(yùn)用配方法解決一些具體題目.重難點(diǎn)關(guān)鍵1.重點(diǎn):講清配方法的解題步驟.2.難點(diǎn)與關(guān)鍵:把常數(shù)項(xiàng)移到方程右邊后,兩邊加上的常數(shù)是一次項(xiàng)系數(shù)一半的平方.教具、學(xué)具準(zhǔn)備小黑板教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))解下列方程:(1)x2-4x+7=0(2)2x2-8x+1=0老師點(diǎn)評(píng):我們上一節(jié)課,已經(jīng)學(xué)習(xí)了如何解左邊不含有x的完全平方形式,不可以直接開方降次解方程的轉(zhuǎn)化問題,那么這兩道題也可以用上面的方法進(jìn)行解題.解:略.(2)與(1)有何關(guān)聯(lián)?二、探索新知討論:配方法屆一元二次方程的一般步驟:(1)現(xiàn)將已知方程化為一般形式;(2)化二次項(xiàng)系數(shù)為1;(3)常數(shù)項(xiàng)移到右邊;(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程無(wú)實(shí)根.例1.解下列方程(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我們已經(jīng)介紹了配方法,因此,我們解這些方程就可以用配方法來(lái)完成,即配一個(gè)含有x的完全平方.解:略三、鞏固練習(xí)教材P39練習(xí)2.(3)、(4)、(5)、(6).四、應(yīng)用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因?yàn)槿绻归_(6x+7)2,那么方程就變得很復(fù)雜,如果把(6x+7)看為一個(gè)數(shù)y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就轉(zhuǎn)化為y的方程,像這樣的轉(zhuǎn)化,我們把它稱為換元法.解:設(shè)6x+7=y則3x+4=y+,x+1=y-依題意,得:y2(y+)(y-)=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72,y4-y2=72(y2-)2=y2-=±y2=9或y2=-8(舍)∴y=±3當(dāng)y=3時(shí),6x+7=36x=-4x=-當(dāng)y=-3時(shí),6x+7=-36x=-10x=-所以,原方程的根為x1=-,x2=-例3求證:無(wú)論y取何值時(shí),代數(shù)式-3y2+8y-6恒小于0.五、歸納小結(jié)本節(jié)課應(yīng)掌握:1.配方法的概念及用配方法解一元二次方程的步驟.2.配方法是解一元二次方程的通法,它重要性,不僅僅表現(xiàn)在一元二次方程的解法中,也可通過配方,利用非負(fù)數(shù)的性質(zhì)判斷代數(shù)式的正負(fù)性(如例3)在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時(shí),還將經(jīng)常用到。六、布置作業(yè)1.教材P45復(fù)習(xí)鞏固3.(3)(4)補(bǔ)充:(1)已知x2+y2+z2-2x+4y-6z+14=0,則求x+y+z的值(2)求證:無(wú)論x、y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是正數(shù)2.作業(yè)設(shè)計(jì)一、選擇題1.配方法解方程2x2-x-2=0應(yīng)把它先變形為().A.(x-)2=B.(x-)2=0C.(x-)2=D.(x-)2=2.下列方程中,一定有實(shí)數(shù)解的是().A.x2+1=0B.(2x+1)2=0C.(2x+1)2+3=0D.(x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,則x+y+z的值是().A.1B.2C.-1D.-2二、填空題1.如果x2+4x-5=0,則x=_______.2.無(wú)論x、y取任何實(shí)數(shù),多項(xiàng)式x2+y2-2x-4y+16的值總是_______數(shù).3.如果16(x-y)2+40(x-y)+25=0,那么x與y的關(guān)系是________.三、綜合提高題1.用配方法解方程.(1)9y2-18y-4=0(2)x2+3=2x2.已知:x2+4x+y2-6y+13=0,求的值.3.某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴(kuò)大銷售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)降價(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,商場(chǎng)平均每天可多售出2件.①若商場(chǎng)平均每天贏利1200元,每件襯衫應(yīng)降價(jià)多少元?②每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天贏利最多?請(qǐng)你設(shè)計(jì)銷售方案.課后反思第6課時(shí)22.2.3公式法教學(xué)內(nèi)容1.一元二次方程求根公式的推導(dǎo)過程;2.公式法的概念;3.利用公式法解一元二次方程.教學(xué)目標(biāo)理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo)公式,并應(yīng)用公式法解一元二次方程.重難點(diǎn)關(guān)鍵1.重點(diǎn):求根公式的推導(dǎo)和公式法的應(yīng)用.2.難點(diǎn)與關(guān)鍵:一元二次方程求根公式法的推導(dǎo).教學(xué)過程復(fù)習(xí)引入前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程(1)x2=4(2)(x-2)2=7提問1這種解法的(理論)依據(jù)是什么?提問2這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程。)2.面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式。)(學(xué)生活動(dòng))用配方法解方程2x2+3=7x(老師點(diǎn)評(píng))略總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng)).(1)現(xiàn)將已知方程化為一般形式;(2)化二次項(xiàng)系數(shù)為1;(3)常數(shù)項(xiàng)移到右邊;(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程無(wú)實(shí)根.二、探索新知用配方法解方程ax2-7x+3=0(2)ax2+bx+3=0(3)如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問題.問題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=,x2=(這個(gè)方程一定有解嗎?什么情況下有解?)分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ)、b、c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.解:移項(xiàng),得:ax2+bx=-c二次項(xiàng)系數(shù)化為1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=∵4a2>0,4a2>0,當(dāng)b2-4ac≥0時(shí)≥0∴(x+)2=()2直接開平方,得:x+=±即x=∴x1=,x2=由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此:(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a、b、c代入式子x=就得到方程的根.(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過的六中運(yùn)算,加、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。)(2)這個(gè)式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.例1.用公式法解下列方程.(1)2x2-x-1=0(2)x2+1.5=-3x(3)x2-x+=0(4)4x2-3x+2=0分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.補(bǔ):(5)(x-2)(3x-5)=0三、鞏固練習(xí)教材P42練習(xí)1.(1)、(3)、(5)或(2)、(4)、(6)四、應(yīng)用拓展例2.某數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1)+(m-2)x-1=0提出了下列問題.(1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程為一元二次方程m是否存在?若存在,請(qǐng)求出.你能解決這個(gè)問題嗎?分析:能.(1)要使它為一元二次方程,必須滿足m2+1=2,同時(shí)還要滿足(m+1)≠0.(2)要使它為一元一次方程,必須滿足:①或②或③解:(1)存在.根據(jù)題意,得:m2+1=2m2=1m=±1當(dāng)m=1時(shí),m+1=1+1=2≠0當(dāng)m=-1時(shí),m+1=-1+1=0(不合題意,舍去)∴當(dāng)m=1時(shí),方程為2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9x=x1=,x2=-因此,該方程是一元二次方程時(shí),m=1,兩根x1=1,x2=-.(2)存在.根據(jù)題意,得:①m2+1=1,m2=0,m=0因?yàn)楫?dāng)m=0時(shí),(m+1)+(m-2)=2m-1=-1≠0所以m=0滿足題意.②當(dāng)m2+1=0,m不存在.③當(dāng)m+1=0,即m=-1時(shí),m-2=-3≠0所以m=-1也滿足題意.當(dāng)m=0時(shí),一元一次方程是x-2x-1=0,解得:x=-1當(dāng)m=-1時(shí),一元一次方程是-3x-1=0解得x=-因此,當(dāng)m=0或-1時(shí),該方程是一元一次方程,并且當(dāng)m=0時(shí),其根為x=-1;當(dāng)m=-1時(shí),其一元一次方程的根為x=-.五、歸納小結(jié)本節(jié)課應(yīng)掌握:(1)求根公式的概念及其推導(dǎo)過程;(2)公式法的概念;(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0.2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào)。3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解,4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果。(4)初步了解一元二次方程根的情況.六、布置作業(yè)1.教材P45復(fù)習(xí)鞏固4.2.選用作業(yè)設(shè)計(jì):一、選擇題1.用公式法解方程4x2-12x=3,得到().A.x=B.x=C.x=D.x=2.方程x2+4x+6=0的根是().A.x1=,x2=B.x1=6,x2=C.x1=2,x2=D.x1=x2=-3.(m2-n2)(m2-n2-2)-8=0,則m2-n2的值是().A.4B.-2C.4或-2D.-4或2二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=-,x1·x2=;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí)元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況月份用電量(千瓦時(shí))交電費(fèi)總金額(元)3802544510根據(jù)上表數(shù)據(jù),求電廠規(guī)定的A值為多少?課后反思:第7課時(shí)22.2.4判別一元二次方程根的情況教學(xué)內(nèi)容用b2-4ac大于、等于0、小于0判別ax2+bx+c=0(a≠0)的根的情況及其運(yùn)用.教學(xué)目標(biāo)掌握b2-4ac>0,ax2+bx+c=0(a≠0)有兩個(gè)不等的實(shí)根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)沒實(shí)根,反之也成立;及其它們關(guān)系的運(yùn)用.通過復(fù)習(xí)用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一題,分析它們根的情況,從具體到一般,給出三個(gè)結(jié)論并應(yīng)用它們解決一些具體題目.重難點(diǎn)關(guān)鍵1.重點(diǎn):b2-4ac>0一元二次方程有兩個(gè)不相等的實(shí)根;b2-4ac=0一元二次方程有兩個(gè)相等的實(shí)數(shù);b2-4ac<0一元二次方程沒有實(shí)根.2.難點(diǎn)與關(guān)鍵從具體題目來(lái)推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情況與根的情況的關(guān)系.教具、學(xué)具準(zhǔn)備小黑板教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))用公式法解下列方程.(1)2x2-3x=0(2)3x2-2x+1=0(3)4x2+x+1=0老師點(diǎn)評(píng),(三位同學(xué)到黑板上作)老師只要點(diǎn)評(píng)(1)b2-4ac=9>0,有兩個(gè)不相等的實(shí)根;(2)b2-4ac=12-12=0,有兩個(gè)相等的實(shí)根;(3)b2-4ac=│-4×4×1│=<0,方程沒有實(shí)根.二、探索新知方程b2-4ac的值b2-4ac的符號(hào)x1、x2的關(guān)系(填相等、不等或不存在)2x2-3x=03x2-2x+1=04x2+x+1=0請(qǐng)觀察上表,結(jié)合b2-4ac的符號(hào),歸納出一元二次方程的根的情況。證明你的猜想。從前面的具體問題,我們已經(jīng)知道b2-4ac>0(<0,=0)與根的情況,現(xiàn)在我們從求根公式的角度來(lái)分析:求根公式:x=,當(dāng)b2-4ac>0時(shí),根據(jù)平方根的意義,等于一個(gè)具體數(shù),所以一元一次方程的x1=≠x1=,即有兩個(gè)不相等的實(shí)根.當(dāng)b2-4ac=0時(shí),根據(jù)平方根的意義=0,所以x1=x2=,即有兩個(gè)相等的實(shí)根;當(dāng)b2-4ac<0時(shí),根據(jù)平方根的意義,負(fù)數(shù)沒有平方根,所以沒有實(shí)數(shù)解.因此,(結(jié)論)(1)當(dāng)b2-4ac>0時(shí),一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等實(shí)數(shù)根即x1=,x2=.(2)當(dāng)b-4ac=0時(shí),一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等實(shí)數(shù)根即x1=x2=.(3)當(dāng)b2-4ac<0時(shí),一元二次方程ax2+bx+c=0(a≠0)沒有實(shí)數(shù)根.例1.不解方程,判定方程根的情況(1)16x2+8x=-3(2)9x2+6x+1=0(3)2x2-9x+8=0(4)x2-7x-18=0分析:不解方程,判定根的情況,只需用b2-4ac的值大于0、小于0、等于0的情況進(jìn)行分析即可.解:(1)化為16x2+8x+3=0這里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0所以,方程沒有實(shí)數(shù)根.三、鞏固練習(xí)不解方程判定下列方程根的情況:(1)x2+10x+26=0(2)x2-x-=0(3)3x2+6x-5=0(4)4x2-x+=0(5)x2-x-=0(6)4x2-6x=0(7)x(2x-4)=5-8x四、應(yīng)用拓展例2.若關(guān)于x的一元二次方程(a-2)x2-2ax+a+1=0沒有實(shí)數(shù)解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就轉(zhuǎn)化為要判定a的值是正、負(fù)或0.因?yàn)橐辉畏匠蹋╝-2)x2-2ax+a+1=0沒有實(shí)數(shù)根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范圍.解:∵關(guān)于x的一元二次方程(a-2)x2-2ax+a+1=0沒有實(shí)數(shù)根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+a<-2∵ax+3>0即ax>-3∴x<-∴所求不等式的解集為x<-五、歸納小結(jié)本節(jié)課應(yīng)掌握:b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)根;b2-4ac=0一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)根;b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)沒有實(shí)數(shù)根及其它的運(yùn)用.六、布置作業(yè)1.教材P46復(fù)習(xí)鞏固6綜合運(yùn)用9拓廣探索1、2.2.選用課時(shí)作業(yè)設(shè)計(jì).第7課時(shí)作業(yè)設(shè)計(jì)一、選擇題1.以下是方程3x2-2x=-1的解的情況,其中正確的有().A.∵b2-4ac=-8,∴方程有解B.∵b2-4ac=-8,∴方程無(wú)解C.∵b2-4ac=8,∴方程有解D.∵b2-4ac=8,∴方程無(wú)解2.一元二次方程x2-ax+1=0的兩實(shí)數(shù)根相等,則a的值為().A.a(chǎn)=0B.a(chǎn)=2或a=-2C.a(chǎn)=2D.a(chǎn)=2或a=03.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,則k的取值范圍是().A.k≠2B.k>2C.k<2且k≠1D.k為一切實(shí)數(shù)二、填空題1.已知方程x2+px+q=0有兩個(gè)相等的實(shí)數(shù),則p與q的關(guān)系是________.2.不解方程,判定2x2-3=4x的根的情況是______(填“二個(gè)不等實(shí)根”或“二個(gè)相等實(shí)根或沒有實(shí)根”).3.已知b≠0,不解方程,試判定關(guān)于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情況是________.三、綜合提高題1.不解方程,試判定下列方程根的情況.(1)2+5x=3x2(2)x2-(1+2)x++4=02.當(dāng)c<0時(shí),判別方程x2+bx+c=0的根的情況.3.不解方程,判別關(guān)于x的方程x2-2kx+(2k-1)=0的根的情況.4.某集團(tuán)公司為適應(yīng)市場(chǎng)競(jìng)爭(zhēng),趕超世界先進(jìn)水平,每年將銷售總額的8%作為新產(chǎn)品開發(fā)研究資金,該集團(tuán)2000年投入新產(chǎn)品開發(fā)研究資金為4000萬(wàn)元,2002年銷售總額為7.2億元,求該集團(tuán)2000年到2002年的年銷售總額的平均增長(zhǎng)率.第8課時(shí)22.2.5因式分解法教學(xué)內(nèi)容用因式分解法解一元二次方程.教學(xué)目標(biāo)掌握用因式分解法解一元二次方程.通過復(fù)習(xí)用配方法、公式法解一元二次方程,體會(huì)和探尋用更簡(jiǎn)單的方法──因式分解法解一元二次方程,并應(yīng)用因式分解法解決一些具體問題.重難點(diǎn)關(guān)鍵1.重點(diǎn):用因式分解法解一元二次方程.2.難點(diǎn)與關(guān)鍵:讓學(xué)生通過比較解一元二次方程的多種方法感悟用因式分解法使解題簡(jiǎn)便.教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老師點(diǎn)評(píng):(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為,的一半應(yīng)為,因此,應(yīng)加上()2,同時(shí)減去()2.(2)直接用公式求解.二、探索新知(學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題.(老師提問)(1)上面兩個(gè)方程中有沒有常數(shù)項(xiàng)?(2)等式左邊的各項(xiàng)有沒有共同因式?(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解:因此,上面兩個(gè)方程都可以寫成:(1)x(2x+1)=0(2)3x(x+2)=0因?yàn)閮蓚€(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.例1.解方程(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-=x2-2x+(4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的條件是什么?解:略(方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積。)練習(xí):1.下面一元二次方程解法中,正確的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=1三、鞏固練習(xí)教材P45練習(xí)1、2.例2.已知9a2-4b2=0,求代數(shù)式的值.分析:要求的值,首先要對(duì)它進(jìn)行化簡(jiǎn),然后從已知條件入手,求出a與b的關(guān)系后代入,但也可以直接代入,因計(jì)算量比較大,比較容易發(fā)生錯(cuò)誤.解:原式=∵9a2-4b2=0∴(3a+2b)(3a-2b)=03a+2b=0或3a-2b=0,a=-b或a=b當(dāng)a=-b時(shí),原式=-=3當(dāng)a=b時(shí),原式=-3.四、應(yīng)用拓展例3.我們知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可轉(zhuǎn)化為(x-a)(x-b)=0,請(qǐng)你用上面的方法解下列方程.(1)x2-3x-4=0(2)x2-7x+6=0(3)x2+4x-5=0分析:二次三項(xiàng)式x2-(a+b)x+ab的最大特點(diǎn)是x2項(xiàng)是由x·x而成,常數(shù)項(xiàng)ab是由-a·(-b)而成的,而一次項(xiàng)是由-a·x+(-b·x)交叉相乘而成的.根據(jù)上面的分析,我們可以對(duì)上面的三題分解因式.解(1)∵x2-3x-4=(x-4)(x+1)∴(x-4)(x+1)=0∴x-4=0或x+1=0∴x1=4,x2=-1下略。上面這種方法,我們把它稱為十字相乘法.五、歸納小結(jié)本節(jié)課要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.(2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.六、布置作業(yè)教材P46復(fù)習(xí)鞏固5綜合運(yùn)用8、10拓廣探索11.第8課時(shí)作業(yè)設(shè)計(jì)一、選擇題1.下面一元二次方程解法中,正確的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=12.下列命題①方程kx2-x-2=0是一元二次方程;②x=1與方程x2=1是同解方程;③方程x2=x與方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正確的命題有().A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)3.如果不為零的n是關(guān)于x的方程x2-mx+n=0的根,那么m-n的值為().A.-B.-1C.D.1二、填空題1.x2-5x因式分解結(jié)果為_______;2x(x-3)-5(x-3)因式分解的結(jié)果是______.2.方程(2x-1)2=2x-1的根是________.3.二次三項(xiàng)式x2+20x+96分解因式的結(jié)果為________;如果令x2+20x+96=0,那么它的兩個(gè)根是_________.三、綜合提高題1.用因式分解法解下列方程.(1)3y2-6y=0(2)25y2-16=0(3)x2-12x-28=0(4)x2-12x+35=02.已知(x+y)(x+y-1)=0,求x+y的值.3.今年初,湖北武穴市發(fā)生禽流感,某養(yǎng)雞專業(yè)戶在禽流感后,打算改建養(yǎng)雞場(chǎng),建一個(gè)面積為150m2的長(zhǎng)方形養(yǎng)雞場(chǎng).為了節(jié)約材料,雞場(chǎng)的一邊靠著原有的一條墻,墻長(zhǎng)am,另三邊用竹籬圍成,如果籬笆的長(zhǎng)為35m,問雞場(chǎng)長(zhǎng)與寬各為多少?(其中a≥課后反思第9課時(shí)一元二次方程的解法復(fù)習(xí)課教學(xué)內(nèi)容習(xí)題課教學(xué)目標(biāo)能掌握解一元二次方程的四種方法以及各種解法的要點(diǎn)。會(huì)根據(jù)不同的方程特點(diǎn)選用恰當(dāng)?shù)姆椒ǎ墙忸}過程簡(jiǎn)單合理,通過揭示各種解法的本質(zhì)聯(lián)系,滲透降次化歸的思想方法。重難點(diǎn)關(guān)鍵重點(diǎn):會(huì)根據(jù)不同的方程特點(diǎn)選用恰當(dāng)?shù)姆椒?,是解題過程簡(jiǎn)單合理。難點(diǎn):通過揭示各種解法的本質(zhì)聯(lián)系,滲透降次化歸的思想。教學(xué)過程1.用不同的方法解一元二次方程3x2-5x-2=0(配方法,公式法,因式分解發(fā))教師點(diǎn)評(píng):三種不同的解法體現(xiàn)了同樣的解題思路——把一元二次方程“降次”轉(zhuǎn)化為一元一次方程求解。2把下列方程的最簡(jiǎn)潔法選填在括號(hào)內(nèi)。(A)直接開平方法(B)配方法(C)公式法(D)因式分解法(1)7x-3=2x2()(2)4(9x-1)2=25()(3)(x+2)(x-1)=20()(4)4x2+7x=2()(5)2(0.2t+3)2-12.5=0()(6)x2+2x-4=0()說明:一元二次方程解法的選擇順序一般為因式分解法、公式法,若沒有特殊說明一般不采用配方法。其中,公式法是一般方法,適用于解所有的一元二次方程,因式分解法是特殊方法,在解符合方程左邊易因式分解,右邊為0的特點(diǎn)的一元二次方程時(shí),非常簡(jiǎn)便。將下列方程化成一般形式,在選擇恰當(dāng)?shù)姆椒ㄇ蠼狻?1)3x2=x+4(2)(2x+1)(4x-2)=(2x-1)2+2(3)(x+3)(x-4)=-6(4)(x+1)2-2(x-1)2=6x-5說明:將一元二次方程化成一般形式不僅是解一元二次方程的基本技能,而節(jié)能為揭發(fā)的選擇提供基礎(chǔ)。4.閱讀材料,解答問題:材料:為解方程(x2-1)2-5(x2-1)2+4=0,我們可以視(x2-1)為一個(gè)整體,然后設(shè)x2-1=y,原方程可化為y2-5y+4=0①.解得y1=1,y2=4。當(dāng)y1=1時(shí),x2-1=1即x2=2,x=±.當(dāng)y2=4時(shí),x2-1=4即x2=5,x=±√5。原方程的解為x1=,x2=-,x3=√5,x4=-√5解答問題:(1)填空:在由原方程得到①的過程中利用_______法,達(dá)到了降次的目的,體現(xiàn)_______的數(shù)學(xué)思想。(2)解方程x4—x2—6=0.5.小結(jié)(1)說說你對(duì)解一元一次方程、二元一次方程組、一元二次方程的認(rèn)識(shí)(消元、降次、化歸的思想)(2)三種方法(配方法、公式法、因式分解法)的聯(lián)系與區(qū)別:聯(lián)系①降次,即它的解題的基本思想是:將二次方程化為一次方程,即降次.②公式法是由配方法推導(dǎo)而得到.③配方法、公式法適用于所有一元二次方程,因式分解法適用于某些一元二次方程.區(qū)別:①配方法要先配方,再開方求根.②公式法直接利用公式求根.③因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.作業(yè)P58復(fù)習(xí)題221.第10課時(shí)22.3實(shí)際問題與一元二次方程(1)教學(xué)內(nèi)容由“倍數(shù)關(guān)系”等問題建立數(shù)學(xué)模型,并通過配方法或公式法或分解因式法解決實(shí)際問題.教學(xué)目標(biāo)掌握用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決一些具體問題.通過復(fù)習(xí)二元一次方程組等建立數(shù)學(xué)模型,并利用它解決實(shí)際問題,引入用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決實(shí)際問題.重難點(diǎn)關(guān)鍵1.重點(diǎn):用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型2.難點(diǎn)與關(guān)鍵:用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型教學(xué)過程一、復(fù)習(xí)引入(學(xué)生活動(dòng))問題1:列一元一次方程解應(yīng)用題的步驟?①審題,②設(shè)出未知數(shù).③找等量關(guān)系.④列方程,⑤解方程,⑥答.二、探索新知上面這道題大家都做得很好,這是一種利用一元一次方程的數(shù)量關(guān)系建立的數(shù)學(xué)模型,那么還有沒有利用其它形式,也就是利用我們前面所學(xué)過的一元二次方程建立數(shù)學(xué)模型解應(yīng)用題呢?請(qǐng)同學(xué)們完成下面問題.(學(xué)生活動(dòng))探究1:有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個(gè)人傳染了幾個(gè)人?分析:1第一輪傳染1+x第二輪傳染后1+x+x(1+x)解:設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人,則第一輪后共有人患了流感,第二輪后共有人患了流感.列方程得1+x+x(x+1)=121x2+2x-120=0解方程,得 x1=-12,x2=10根據(jù)問題的實(shí)際意義,x=10答:每輪傳染中平均一個(gè)人傳染了10個(gè)人.思考:按照這樣的傳染速度,三輪傳染后有多少人患流感?(121+121×
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 亞馬遜加盟合同范本
- 2024年秋新滬教牛津版英語(yǔ)三年級(jí)上冊(cè) Unit 5 第3課時(shí)(Grammar in use) 教學(xué)課件
- 2025年數(shù)控銑工技能競(jìng)賽參考試指導(dǎo)題庫(kù)500題(含答案)
- 輸液港相關(guān)護(hù)理
- 產(chǎn)品品牌加盟合同范本
- 2025至2030年中國(guó)抗單鏈DNA數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)康婦特栓數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)左右后門內(nèi)飾板帶卡扣總成數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 小學(xué)生配音課課件視頻
- 2025至2030年中國(guó)雙歧因子奶數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 康復(fù)醫(yī)學(xué)課件-第二章 康復(fù)評(píng)定
- 上海青浦夏雨幼兒園案例分析課件
- 新一代寄遞平臺(tái)投遞PC(10月)課件
- 常州市新課結(jié)束考試九年級(jí)數(shù)學(xué)試卷
- 2021年學(xué)校中考報(bào)名工作方案
- 質(zhì)量管理部工作流程圖
- 安全教育培訓(xùn)記錄表參考模板范本
- 建筑冷熱源素材
- 網(wǎng)絡(luò)安全用戶實(shí)體行為分析技術(shù)UEBA白皮書
- 室內(nèi)設(shè)計(jì)-中式古典風(fēng)格課件
- MOC3061驅(qū)動(dòng)BT134雙向可控硅
評(píng)論
0/150
提交評(píng)論