




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
RevenueManagement
andDynamicPricing:
PartIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@RevenueManagement
andDynamicOutlineConceptExampleComponentsReal-TimeTransactionProcessingExtracting,Transforming,andLoadingDataForecastingOptimizationDecisionSupportNon-TraditionalApplicationsFurtherReadingandSpecialInterestGroupsOutlineConceptRevenueManagement
andDynamicPricingRevenueManagementinConceptRevenueManagement
andDynamicWhatisRevenueManagement?BeganintheairlineindustrySeatsonanaircraftdividedintodifferentproductsbasedondifferentrestrictions$1000Yclassproduct:canbepurchasedatanytime,norestrictions,fullyrefundable$200Qclassproduct:Requires3weekadvancedpurchase,Saturdaynightstay,penaltiesforchangingticketafterpurchaseQuestion:Howmuchinventorytomakeavailableineachclassateachpointinthesalescycle?WhatisRevenueManagement?BegWhatisRevenueManagement?RevenueManagement:ThescienceofmaximizingprofitsthroughmarketdemandforecastingandthemathematicaloptimizationofpricingandinventoryRelatednames:YieldManagement(original)RevenueOptimizationDemandManagementDemandChainManagementWhatisRevenueManagement?RevRudimentsStrategic/Tactical:MarketingMarketsegmentationProductdefinitionPricingframeworkDistributionstrategyOperational:RevenueManagementForecastingdemandbywillingness-to-payDynamicchangestopriceandavailableinventoryRudimentsStrategic/Tactical:IndustryPopularityWasbornofabusinessproblemandspeakstoabusinessproblemAddressestherevenuesideoftheequation,notthecostside2–10%revenueimprovementscommonIndustryPopularityWasbornofIndustryAccolades“Nowwecanbealotsmarter.Revenuemanagementisallofourprofit,andmore.” BillBrunger,VicePresidentContinentalAirlines“PROSproductshavebeenakeyfactorinSouthwest'sprofitperformance.”KeithTaylor,VicePresidentSouthwestAirlinesIndustryAccolades“NowwecanAnalystAccolades“RevenuePricingOptimizationrepresentthenextwaveofsoftwareascompaniesseektoleveragetheirERPandCRMsolutions.”–ScottPhillips,MerrillLynch“Oneofthemostexcitinginevitabilitiesaheadis‘yieldmanagement.’”–BobAustrian,BancofAmericaSecurities“RevenueOptimizationwillbecomeacompetitivestrategyinnearlyallindustries.”–AMRResearchAnalystAccolades“RevenuePricAcademicAccolades“Anareaofparticularinteresttooperationsresearchexpertstoday,accordingtoTrick,isrevenuemanagement.”InformationWeek,July12,2002.Dr.TrickisaProfessoratCMU
andPresidentofINFORMS.AcademicAccolades“AnareaofAcademicAccoladesAswemoveintoanewmillennium,dynamicpricinghasbecometherule.“Yieldmanagement,”saysMr.Varian,“iswhereit’sat.”“ToHalVarianthePriceisAlwaysRight,”strategy+business,Q12000.Dr.VarianisDeanoftheSchoolofInformationManagementandSystemsatUCBerkeley,andwasrecentlynamedoneofthe25mostinfluentialpeopleineBusinessbyBusinessWeek(May14,2001)AcademicAccoladesAswemoveiApplicationAreasTraditionalAirlineHotelExtendedStayHotelCarRentalRailTourOperatorsCargoCruiseNon-TraditionalEnergyBroadcastHealthcareManufacturingApparelRestaurantsGolfMore…ApplicationAreasTraditionalNoDynamicPricingThedistinctionbetweenrevenuemanagementanddynamicpricingisnotaltogetherclearArefareclassesdifferentproducts,ordifferentpricesforthesameproduct?RevenuemanagementtendstofocusoninventoryavailabilityratherthanpriceRealityisthatrevenuemanagementanddynamicpricingareinextricablylinkedDynamicPricingThedistinctionTraditionalRevenueManagementNon-traditionalrevenuemanagementanddynamicpricingapplicationareashavenotevolvedtothepointofstandardindustrypracticesTraditionalrevenuemanagementhas,andwefocusprimarilyontraditionalapplicationsinthispresentationTraditionalRevenueManagementRevenueManagement
andDynamicPricingManagingAirlineInventoryRevenueManagement
andDynamicAirlineInventoryAmid-sizecarriermighthave1000dailydepartureswithanaverageof200seatsperflightlegEWRSEALAXIAHATLORDAirlineInventoryAmid-sizecaAirlineInventory200seatsperflightleg200x1000=200,000seatspernetworkday365networkdaysmaintainedininventory365x200,000=73millionseatsininventoryatanygiventimeThemechanicsofmanagingfinalinventoryrepresentsachallengesimplyduetovolumeAirlineInventory200seatsperAirlineInventoryRevenuemanagementprovidesanalyticalcapabilitiesthatdriverevenuemaximizingdecisionsonwhatinventoryshouldbesoldandatwhatpriceForecastingtodeterminedemandanditswillingness-to-payEstablishinganoptimalmixoffareproductsAirlineInventoryRevenuemanagFareProductMixShoulda$1200SEA-IAH-ATLMclassitinerarybeavailable?A$2000Yclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$1200FareProductMixShoulda$600IAH-ATL-EWRBclassitinerarybeavailable?An$800Mclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$600FareProductMixOptimizationputsinplaceinventorycontrolsthatallowthehighestpayingcollectionofcustomerstobechosenWhenitmakeseconomicsense,fareclasseswillbeclosedsoastosaveroomforhigherpayingcustomersthatareyettocomeFareProductMixOptimizationpRevenueManagement
andDynamicPricingComponentsRevenueManagement
andDynamicTheReal-TimeTransactionProcessorRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheReal-TimeTransactionProcTheRevenueManagementSystemRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheRevenueManagementSystemRAnalystsRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportAnalystsRevenueManagementSysTheRevenueManagementProcessRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportTheRevenueManagementProcessReal-TimeTransactionProcessorTheoptimizationparametersrequiredbythereal-timetransactionprocessorandsuppliedbytherevenuemanagementsystemconstitutetheinventory
control
mechanismReal-TimeTransactionProcessoReal-TimeTransactionProcessorDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QReal-TimeTransactionProcessoReal-TimeTransactionProcessorNestedleg/classavailabilityisthepredominantinventorycontrolmechanismintheairlineindustryDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QMClassBooking10959Real-TimeTransactionProcessoReal-TimeTransactionProcessorAfareclassmustbeopenonbothflightlegsifthefareclassistobeopenonthetwo-legitinerarySATDFWEWRYClassMClassBClassQClass501000YClassMClassBClassQClass11060200Real-TimeTransactionProcessoExtract,Transform,andLoadTransactionDataComplicationsVolumePerformancerequirementsNewproductsModifiedproductsPurchasemodificationsExtract,Transform,andLoadTExtract,Transform,andLoadTransactionDataPHG01E08800005010710010710225300XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSG01OA3210LAXIAHK0108241500010824222701082422000108250227HKOA00PSG01OA9312IAHMYRK0108242330010825003701082503300108250437HKOA00PHG01E08800005010710010711125400XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHY0109020600010902071401090210000109021114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010712142000XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHL0109030600010903071401090310000109031114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010716104500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513050108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297LPSG01OA5932IAHLAXK0109030800010903094001090312000109031640HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA00PHG01E08800005010710010717111500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297QPSG01OA0981IAHLAXQ0109031420010903160801090318200109032308HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA0012345Extract,Transform,andLoadTDemandModelsandForecastingHowshoulddemandbemodeledandforecast?Smallnumbers/levelofdetailUnobserveddemandandunconstrainingElementsofdemand:purchases,cancellations,noshows,goshowsDemandmodel…theprocessbywhichconsumersmakeproductdecisionsDemandcorrelationanddistributionalassumptionsSeasonalityDemandModelsandForecastingHDemandModelsandForecastingHolidaysandrecurringeventsSpecialeventsPromotionsandmajorpriceinitiativesCompetitiveactionsDemandModelsandForecastingHOptimizationOptimizationissuesConvertibleinventoryMovableinventory/capacitymodificationsOverbooking/oversaleofphysicalinventoryUpgrade/upwardsubstitutableinventoryProductmix/competitionforresources/networkeffectsOptimizationOptimizationissueDecisionSupportDecisionSupportRevenueManagement
andDynamicPricingNon-TraditionalApplicationsRevenueManagement
andDynamicTwoNon-TraditionalApplicationsBroadcastBusinessprocessessurroundingthepurchaseandfulfillmentofadvertisingtimerequiremodificationoftraditionalrevenuemanagementmodelsHealthcareBusinessprocessessurroundingpatientadmissionsrequirere-conceptualizationoftherevenuemanagementprocessTwoNon-TraditionalApplicatioNewAreasContractsandlongtermcommitmentsofinventoryCustomerlevelrevenuemanagementIntegratingsalesandinventorymanagementAlliancesandcooperativeagreementsNewAreasContractsandlongteRevenueManagement
andDynamicPricingFurtherReadingandSpecialInterestGroupsRevenueManagement
andDynamicFurtherReadingForanentrypointintotraditionalrevenuemanagementJefferyMcGillandGarrettvanRyzin,“RevenueManagement:ResearchOverviewandProspects,”TransportationScience,33(2),1999E.AndrewBoydandIoanaBilegan,“RevenueManagementande-Commerce,”underreview,2002FurtherReadingForanentrypoSpecialInterestGroupsSpecialInterestGroupsRevenueManagement
andDynamicPricing:
PartIIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@RevenueManagement
andDynamicOutlineSingleFlightLegLeg/ClassControlBidPriceControlNetwork(O&D)ControlControlMechanismsModelsOutlineSingleFlightLegRevenueManagement
andDynamicPricingSingleFlightLegRevenueManagement
andDynamicLeg/ClassControlDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QAtafixedpointintime,whataretheoptimalnestedinventoryavailabilitylimits?Leg/ClassControlDFWEWRYAvailAMathematicalModelGiven:FareforeachfareclassDistributionoftotaldemand-to-comebyclassDemandassumedindependentDetermine:OptimalnestedbookinglimitsNote:Cancellationstypicallytreatedthroughseparateoptimizationmodeltodetermineoverbooking
levelsAMathematicalModelGiven:AMathematicalModelWheninventoryispartitionedratherthannested,thesolutionissimplePartitioninventorysothattheexpectedmarginalrevenuegeneratedofthelastseatassignedtoeachfareclassisequal(forsufficientlyprofitablefareclasses)AMathematicalModelWheninvenAMathematicalModelNestedinventorymakestheproblemsignificantlymoredifficultduetothefactthatdemandforonefareclassimpactstheavailabilityforotherfareclassesTheproblemisill-posedwithoutmakingexplicitassumptionsaboutarrivalorderEarlymodelsassumedlow-before-highfareclassarrivalsAMathematicalModelNestedinvAMathematicalModelThereexistsasubstantialbodyofliteratureonmethodsforgeneratingoptimalnestedbookingclasslimitsMathematicsbasicallyconsistsofworkingthroughthedetailsofconditioningonthenumberofarrivalsinthelowervaluefareclassesAnheuristicknownasEMSRbthatmimicstheoptimalmethodshascometodominateinpracticeAMathematicalModelThereexisAnAlternativeModelThelow-before-higharrivalassumptionwasaddressedbyassumingdemandarrivesbyfareclassaccordingtoindependentstochasticprocesses(typicallynon-homogeneousPoisson)Sincemanypractitionersconceptualizedemandas
totaldemand-to-come,modelsbasedonstochasticprocessesfrequentlycauseconfusionAnAlternativeModelThelow-beALegDPFormulationWithPoissonarrivals,anaturalsolutionmethodologyisdynamicprogrammingStagespace:timepriortodepartureStatespacewithineachstage:numberofbookingsStatetransitionscorrespondtoeventssuchasarrivalsandcancellationsALegDPFormulationWithPoiss…TT-1T-2T-310nn+1n+2n+3…SeatsRemainingTimetoDepartureCancellationNoEvent/RejectedArrivalAcceptedArrival…………………TT-1T-2T-310nn+1n+2n+3…SeatsALegDPFormulationV(t,n):Expectedreturninstaget,staten
whenmakingoptimaldecisionsV(t,n)=maxu[p0(0+V(t-1,n)) Noevent
(1-p0)c(0+V(t-1,n-1))+ Cancel
(1-p0)(fi<u)i(0+V(t-1,n))
Arrival/Reject
(1-p0)(fiu)i(fi+V(t-1,n+1))] Arrival/Acceptu(t,n):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,statenisabookingrequestALegDPFormulationV(t,n):EALegDPFormulationDPhastheinterestingcharacteristicthatitcalculatesV(t,n)forall(t,n)pairsProvidesvaluableinformationfordecisionmakingPresentscomputationalchallengesThisnaturallysuggestsanalternativecontrolmechanismtonestedfareclassavailabilityBidpricecontrolALegDPFormulationDPhasthe882591639492847884768473200……8823916194908820915891878817200………nn+1n+2n+3SeatsRemainingTT-1T-2T-310TimetoDeparture………………8480V(t,n)=
ExpectedRevenue882591639492847884768473200……8882591639492…nn+1n+2n+3SeatsRemainingT…8480V(t,n)=
ExpectedRevenueV(t,n+1)–V(t,n)=
MarginalExpectedRevenue345338330…T…352882591639492…nn+1n+2n+3SeatsRnn+1n+2n+3SeatsRemainingBidPriceControl:Withn+1seatsremaining,acceptonlyarrivalswithfaresinexcessof345345338330…T…352nn+1n+2n+3SeatsRemainingBidPBidPriceControlLikenestedbookinglimits,thereexistsasubstantialliteratureondynamicprogrammingmethodsforbidpricecontrolWhilebidpricecontrolissimpleandmathematicallyoptimal(foritsmodelingassumptions),ithasnotyetbeenbroadlyacceptedintheairlineindustrySubstantialchangestotheunderlyingbusinessprocessesBidPriceControlLikenestedbBidPriceControlSolutionsfromdynamicprogrammingcanalsobeconvertedtonestedbookinglimits,butthistechniquehasnotbeenbroadlyadoptedinpracticeBidpricecontrolcanbeimplementedwithroughlythesamenumberofcontrolparameters(bidprices)asnestedfareclassavailabilityBidPriceControlSolutionsfroRevenueManagement
andDynamicPricingNetwork(O&D)ControlControlMechanismsRevenueManagement
andDynamicNetworkControlNetworkcontrolrecognizesthatpassengersflowonmultipleflightlegsAnissueofglobalversuslocaloptimizationProblemiscomplicatedformanyreasonsForecastsofmanysmallnumbersDataLegacybusinesspracticesNetworkControlNetworkcontrolInventoryControlMechanismTheinventorycontrolmechanismcanhaveasubstantialimpactonRevenueMarketinganddistributionChangestoRESsystemChangestocontractsanddistributionchannelsInventoryControlMechanismTheExample:
LimitationsofLeg/ClassControlSATDFWEWRSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassenger$1200Y$300YExample:
LimitationsofLeg/ClExample:
LimitationsofLeg/ClassControlOptimalleg/classavailabilityistoleaveoneseatavailableinYclassoneachlegSATDFWEWRYClassMClassBClassQClass1000YClassMClassBClassQClass1000Example:
LimitationsofLeg/ClExample:
LimitationsofLeg/ClassControlSATDFWEWR$1200Y$300YWithleg/classcontrol,thereisnowaytoclose
SAT-DFWYwhileleavingSAT-DFW-EWRYopenSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassengerExample:
LimitationsofLeg/ClLimitationsofLeg/ClassControlThelimitationsofleg/classavailabilityasacontrolmechanismlargelyeliminaterevenueimprovementsfromanythingmoresophisticatedthanleg/classoptimizationForthisreason,carriersthatadoptO&DcontrolalsoadoptanewinventorycontrolmechanismRequirestremendouseffortandexpensetoworkaroundthelegacyinventoryenvironmentLimitationsofLeg/ClassContrAlternativeControlMechanismsWhiletherearemanypotentialinventorycontrolmechanismsotherthanleg/classcontrol,twohavecometopredominateO&DrevenuemanagementapplicationsVirtualnestingBidpriceNotethattheconceptofitinerary/fareclass(ODIF)inventorylevelcontrolisimpracticalAlternativeControlMechanismsVirtualNestingAprimalcontrolmechanismsimilarinflavortoleg/classcontrolAsmallsetofvirtualinventorybucketsaredeterminedforeachlegNestedinventorylevelsareestablishedforeachbucketEachleginanODIFismappedtoaleginventorybucketandanODIFisavailableforsaleifinventoryisavailableineachlegbucketVirtualNestingAprimalcontroVirtualNestingSAT-DFW-EWRYmapstovirtualbucket3onlegSAT-DFWandvirtualbucket1onlegDFW-EWRTotalavailabilityof10forSAT-DFW-EWRYSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFW-EWRYmVirtualNestingSAT-DFWYmapstovirtualbucket4onlegSAT-DFWSAT-DFWYisclosedSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFWYmapsBidPriceControlAdualcontrolmechanismAbidpriceisestablishedforeachflightlegAnODIFisopenforsaleifthefareexceedsthesumofthebidpricesonthelegsthatareusedBidPriceControlAdualcontroBidPriceControlSATDFWEWR$1200YBidPrice=$400BidPrice=$600SAT-DFW-EWRYisopenforsalebecause
$1200$400+$600
BidPriceControlSATDFWEWR$120BidPriceControlSATDFWEWRBidPrice=$400BidPrice=$600$300YSAT-DFWYisclosedforsalebecause
$300<$400BidPriceControlSATDFWEWRBidBidPriceControlSATDFWEWRIntermediatecontrolbetweenoptimizationpointsisachievedbyhavingadifferentbidpriceforeach
seatsoldininventory654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRInteBidPriceControlSATDFWEWRAfteraseatissoldthebidpriceincreases,reflectingthereducedinventoryavailability654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRAfteVirtualNestingAdvantagesVerygoodrevenueperformanceComputationallytractableRelativelysmallnumberofcontrolparametersComprehensibletousersAcceptedindustrypracticeDisadvantagesNotdirectlyapplicabletomulti-dimensionalresourcedomainsProperoperationrequiresconstantremappingofODIFstovirtualbucketsVirtualNestingAdvantagesBidPriceControlAdvantagesExcellentrevenueperformanceComputationallytractableComprehensibletousersBroaderusethanrevenuemanagementapplicationsPlacesamonetaryvalueonunitinventoryDisadvantagesGrowinguseracceptance,buthasnotreached
thesamelevelasprimalmethodsBidPriceControlAdvantagesRevenueManagement
andDynamicPricingNetwork(O&D)ControlModelsRevenueManagement
andDynamicAModelThedemandallocationmodel(alsoknownasthedemand-to-comemodel)hasbeenproposedforuseinrevenuemanagementapplications,butistypicallynotemployedForallofitslimitations,thedemandallocationmodelbringstolightmanyoftheimportantissuesinrevenuemanagementAModelThedemandallocationmDemandAllocationModelMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
I=setofODIFsE=setofflightlegsce=capacityofflightedi=demandforODIFiri=ODIFirevenueI(e)=ODIFsusingflightexi=demandallocatedtoODIFiDemandAllocationModelMax iLeg/ClassControlMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
Thevariablesxicanberolleduptogenerateleg/classavailabilityLeg/ClassControlMax iIrVirtualNestingMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
OnceODIFshavebeenassignedtolegbuckets,thevariablesxicanberolleduptogenerateleg/classavailabilityVirtualNestingMax iIriBidPriceControlMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
ThedualvariableseassociatedwiththecapacityconstraintscanbeusedasbidpricesBidPriceControlMax iIrNetworkAlgorithms:
Leg/ClassControlNetworkalgorithmsforgeneratingnestedleg/classavailabilityarenottypicallyusedLimitationsofthecontrolmechanismandfarestructureeliminatemuchofthevalueNetworkAlgorithms:
Leg/ClassNetworkAlgorithms:
VirtualNestingControlOptimizationconsistsofdeterminingtheODIFtoleg/bucketmapping,andthencalculatingnestedleg/bucketinventorylevelsBestmappingsprorateODIFfarestolegs,andthengroupsimilarproratedfaresintothesamebucketThebestprorationmethodsdependondemandforecastsandrealizedbookings,andchangedynamicallythroughoutthebookingcycleWithODIFsmappedtobuckets,nestedbucketinventorylevelsarecalculatedusingthenestedleg/bucketalgorithmofchoiceNetworkAlgorithms:
VirtualNeNetworkAlgorithms:
BidPriceControlBidpricesarenormallygenerateddirectlyorindirectlyfromthedualsolutionofanetworkoptimizationmodelNetworkAlgorithms:
BidPriceResourceAllocationModelObservationsA200legnetworkmayhave10,000activeODIFs,leadingtoanetworkoptimizationproblemwith10,000columnsand10,200rowsWith20,000passengers,theaveragenumberofpassengersperODIFis2Typically,20%oftheODIFswillcarry80%ofthetraffic,withalargenumberofODIFscarryingontheorderof.01orfewerpassengersper
networkdayResourceAllocationModelObserResourceAllocationModelMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
ManysmallnumbersResourceAllocationModelMax LevelofDetailProblemThelevelofdetailproblemremainsapracticalconsiderationwhensettingupanyrevenuemanagementsystemWhatlevelofdetaildotheexistingdatasourcessupport?Whatlevelofdetailprovidesthebestrevenueperformance?Atwhatpointdoesforecastnoiseovercomeimprovementsfrommoresophisticated
optimizationmodels?LevelofDetailProblemThelevLevelofDetailProblemAsarule,evenwiththemanysmallnumbersinvolved,networkoptimizationalgorithmsperformconsistentlybetterthannon-networkalgorithmsDualsolutionsaretypicallymuchmorerobustandofbetterqualitythansolutionsconstructedfromprimalODIFallocationsLevelofDetailProblemAsaruRevenueManagement
andDynamicPricingNetwork(O&D)ControlOptimizationChallengesRevenueManagement
andDynamicANetworkDPFormulationNetworkDPformulationStagespace:timepriortodepartureStatespacewithineachstage:multidimensional,withnumberofbookingsoneachofMflightsStatetransitionscorrespondtoeventssuchasODIFarrivalsandcancellationsANetworkDPFormulationNetworANetworkDPFormulationV(t,n1,…,nM):Expectedreturninstaget,state (n1,…,nM)whenmakingoptimaldecisionsu(t,n1,…,nM,k):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,state(n1,…,nM)isabookingrequest forODIFkANetworkDPFormulationV(t,n1ANetworkDPFormulationObservationsA200legnetworkwithanaverageof150seatsperflightlegwouldhave150200statesperstageWith10,000activeODIFs,assumingonlysinglepassengerarrivalsandcancellations,eachstatewouldhave~20,000possiblestatetransitionsGivesriseto~20,000“bidprices”perstateANetworkDPFormulationObservAnAlternativeViewofDPConsiderabookingrequestatt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代寫課題申報書多少錢
- 成囊材料市場分析及競爭策略分析報告
- 企業(yè)生產(chǎn)線用工合同范本
- 中國傳統(tǒng)文化學(xué)習(xí)心得體會
- 廠家求購鋼材合同范本
- 臨床護(hù)理習(xí)題(附答案)
- 機(jī)械制造基礎(chǔ)模擬試題含答案
- 代理經(jīng)營承包協(xié)議合同范本
- 箱包維修合同范本
- 流體力學(xué)復(fù)習(xí)題(含答案)
- 中小學(xué)生防性侵教育課件主題班會
- 倉儲管理改善計劃表
- 人教版四年級音樂下冊(簡譜)全冊課件【完整版】
- 高中語文《茶館》第二課時課件
- 新教科版五年級上冊科學(xué)全冊重點題型練習(xí)課件(含答案)
- 堡壘機(jī)產(chǎn)品功能
- 發(fā)展?jié)h語-初級讀寫-I-第八課
- 跨境電商基礎(chǔ)PPT完整全套教學(xué)課件
- 冀人版五年級科學(xué)下冊同步練習(xí)(全冊)
- 直殼體螺桿鉆具維護(hù)使用手冊
- 蕉嶺縣幅地質(zhì)圖說明書
評論
0/150
提交評論