版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
微觀經(jīng)濟(jì)學(xué)
Microeconomics
ECON501LectureNote1
PreferenceandChoiceStructurePreferencerelationChoicerulesThelinkbetweenpreferenceandchoicePreferenceRelationsTheRationalPreferenceCompletenessTransitivityUtilityFunctionDefinition:afunctionuisautilityfunctionrepresentingpreferencerelationif
ApreferencerelationcanberepresentedbyautilityfunctiononlyifitisrationalChoiceRulesAchoicestructureBudgetsetsAchoiceruleTheweakaxiomofrevealedpreference(WARP):ifxisrevealedatleastasgoodasy,thenycannotberevealedpreferredtoxTheLinkBetweenPreferenceandChoiceIfthepreferencerelationisrational,thenthechoicestructuresatisfiestheweakaxiom.IfthechoicestructuresatisfiestheWARPandβincludesallsubsetsofXofuptothreeelements,thenthereisacorrespondingrationalpreferencerelation.ECON501LectureNote2
ConsumerTheory1(TextbookChapter2and3)StructureConsumerChoice(Chapter2)BudgetsetWalrasiandemandfunctionComparativestaticsTheweakaxiomofrevealedpreferenceandthelawofdemandPreference(Chapter3)ThebasicpropertiesofpreferenceExistenceofutilityfunctionTheBudgetsetCommoditiesThephysicalconstraintsandtheconsumptionsetTheeconomicconstraint:TheWalrasianbudgetset(Definition2.D.1)ConvexityofWalrasianbudgetset:proofConsumer’sChoiceTheconsumer’sproblem:tochooseaconsumptionbundlexfromtheWalrasianbudgetset.WalrasianDemandFunctionAssumption:Itishomogeneousofdegreeofzero(Definition2.E.1):individual’schoicedependsonlyonthesetoffeasiblepoints.ItsatisfiesWalras’law(Definition2.E.2):theconsumerfullyexpendshiswealth.Exercise2.E.1ComparativeStatics–WealthEffectsTheconsumer’sEngelfunctionThewealtheffectNormalgoodsandinferiorgoodsComparativeStatics–PriceEffectsThedemandcurve(Figure2.E.2)Theoffercurve(Figure2.E.3and2.E.4)ThepriceeffectTheWeakAxiomofRevealedPreference(Definition2.F.1)TheWalrasiandemandfunctionsatisfiedtheweakaxiomofrevealedpreferenceif:Intuition:Figure2.F.1TheImplicationofWARPTwoeffectsofpricechange:substitutioneffectandincomeeffect(Slutsky)compensatedpricechangesProposition2.F.1:TheWalrasiandemandfunctionsatisfiedtheWARPifandonlyif:foranycompensatedpricechangefrominitial(p,w)to(p’,w’)=(p’,p’x(p,w)),wehaveThelawofdemandBasicPropertiesofPreferenceRational(Definition3.B.1)Monotone(Definition3.B.2)Localnonsatiated(Definition3.B.3)Convex(Definition3.B.4)Homothetic(Definition3.B.6)Quasilinear(Definition3.B.7)Continuous(Definition3.C.1)ExistenceofAUtilityFunctionProposition3.C.1:supposethattherationalpreferencerelationonXiscontinuous,thenthereisacontinuousutilityfunctionthatrepresentthispreference
ECON501LectureNote3
ConsumerTheory2(TextbookChapter3)StructureUtilityMaximizationProblemUtilitymaximizationWalrasiandemandfunctionIndirectutilityfunctionExpenditureMinimizationProblemExpenditureminimizationExpenditurefunctionHicksiandemandfunctionUtilityMaximizationProblemTheproblem:TheLagrangianfortheconsumer’sconstrainedoptimization:Firstordercondition:Solution:WalrasiandemandfunctionUtilityMaximization--ExampleExample3.D.1:thetransformedCobb-DouglasUtilityFunctionWalrasianDemandFunctionAssumption:supposeacontinuousutilityfunctionrepresentingalocallynonsatiatedpreferencerelationPropertiesofWalrasiandemandfunction:ItishomogeneousofdegreeofzeroItsatisfiesWalras’lawConvexityofpreferenceimpliesconvexityofx(p,w),strictconvexityofpreferencesimpliesthatx(p,w)issingle-valuedProofIndirectUtilityFunctionDefinition:Properties:HomogeneousofdegreeofzeroStrictlyincreasinginwandnonincreasinginpQuasiconvexinpandwContinuousProofExpenditureMinimizationProblemTheproblem:Thefirstordercondition:Thesolution:Hicksiandemandfunctionh(p,u)ExpenditureFunctionExpenditurefunctionProperties:HomogeneousofdegreeofoneinpStrictlyincreasinginuandnondecreasinginpConcaveinpContinuousinpanduProofHicksianDemandFunctionPropertiesHomogenousofdegreeofzeroinpNoexcessutilityConvexity/uniquenessProofExample3.E.1:HicksiandemandfunctionandexpenditurefunctionfortheCobb-DouglasutilityfunctionECON501LectureNote4ConsumerTheory3StructureDualityIdentitiesofDuality(p.60)HicksianDemandandExpenditureFunction(p.68)WalrasianDemandandIndirectUtilityFunction(p.73)HicksianandWalrasianDemand(p.71)SummaryofDuality(p.75)WelfareEvaluation(p.80)DualityLetx*bethesolutiontotheutilitymaximizationproblemThenx*isalsothesolutiontotheexpenditureproblem
IdentitiesofDualityTheidentities(p.60)HicksianDemandandExpenditureFunctionProposition3.G.1(p.68):[Proof]WalrasianDemandandIndirectUtilityFunctionRoy’sidentity(Proposition3.G.4,p.73):[Proof]TheCompensatedLawofDemand(p.62)(Proposition3.E.4)TheHicksiandemandfunctionsatisfiesthecompensatedlawofdemand:forallp’andp’’[Proof]TheHecksianandWalrasianDemandFunction(Proposition3.G.3,p.71)TheSlutskyEquation[Proof]RelationshipbetweentheUMPandtheEMPSlutskyEquationRoy’sidentityWelfareEvaluationTheequivalentvariation(EV)Thecompensatingvariation(CV)ECON501LectureNote5ProducerChoice1StructureTechnologyandProductionSetProfitMaximizationProblemDefinitionofProductionSet(p.128)Productionset:Transformationfunction:Transformationfrontier:Themarginalrateoftransformation:TechnologieswithDistinctInputsandOutputs(p.129)Productionfunction:ThemarginalrateoftechnicalsubstitutionofinputlforinputkPropertiesofProductionSet(p.130)NonemptyClosedNofreelunchPossibilityofinactionFreedisposalIrreversibilityReturntoscale:nonincreasing,nondecreasing,constantAdditivity(freeentry)ConvexityProfitMaximization(p.135)Problem:Thefirstordercondition:Alternativeway:single-outputtechnologyProfitFunctionProfitfunction:Properties:(p.138)HomogeneousofdegreeofoneinpConvexinpNondecreasinginoutputprice,andnonincreasingininputpriceDemandfunction(supplyfunction)Properties:(p.138)HomogeneousofdegreeofzeroinpIfYisconvex,theny(p)isconvexsetforallp;ifYisstrictlyconvex,theny(p)issinglevalueHotellingLemma:
TheLawofSupply(p.138)Thelawofsupply:quantitiesrespondinthesamedirectionaspricechange[Proof]ECON501LectureNote6ProducerChoice2StructureCostMinimizationProblemDuality:ProductionFunctionandCostFunctionCostMinimizationProblem(p.139)ProblemFirstordercondition:ConditionalfactordemandfunctionCostfunctionExample:theCobb-DouglasproductionfunctionCostFunction(p.141)PropertiesNondecreasinginqHomogeneousofdegreeofoneinwConcaveinwContinuousinwIff(.)ishomogeneousofdegreeofone,thenc(.)ishomogeneousofdegreeofoneinqConditionalFactorDemandFunctionPropertyHomogeneousofdegreezeroinwIff(.)ishomogeneousofdegreeone,thenz(.)ishomogeneousofdegreeofoneinqShepard’slemma:
ProfitMaximizationProblemProblem:Firstordercondition:LongRunandShortRunCostFunctionMarginalcostAveragecostTheshortruncostfunctionThelinkagebetweenlongrunandshortruncostDuality:CostandProductionFunctionRecoveringtheproductionfunctionfromthecostfunctionDualityIsoquant:Theslopeofisoquant:Isocostcurve:Theslopeofisocost:ECON501LectureNote7ChoiceUnderUncertaintyStructureExpectedUtilityTheoryLotteryPreferenceoverLotteryTheExpectedUtilityFunctionTheExpectedUtilityTheoremMoneyLotteriesandRiskAversionMoneyLotteryRiskAversion:DefinitionRiskAversion:MeasurementLottery(p.168)Asimplelottery(Definition6.B.1)Acompoundlottery(Definition6.B.2)AreducedlotteryPreferenceoverLotteriesProperties(p.171)CompleteTransitiveContinuousIndependenceaxiomTheExpectedUtilityFunction(Definition6.B.5)TheutilityfunctionUhasanexpectedutilityformif:(Proposition6.B.1)AutilityfunctionUhasanexpectedutilityformifandonlyifitislinear:(Proposition6.B.2)SupposethatUisav.N-Mexpectedutilityfunction,thenU’isanotherv.N-Mfunctionifandonlyif:TheExpectedUtilityTheorem(Proposition6.B.3):supposethattherationalpreferencerelationonthespaceoflotterysatisfiesthecontinuityandindependenceaxioms,thenthisrelationadmitsautilityrepresentationoftheexpectedutilityform.ProofMoneyLotteriesMoneyLotteries:v.N-Mexpectedutilityfunction:RiskAversion:DefinitionThedecisionmakerisriskaverseifandonlyifThecertaintyequivalentofF(.)TheprobabilitypremiumRiskAversionEquivalentStatements(p.187)Thedecisionmakerisriskaverse.u(.)isconcave.
Example:insuranceMeasurementofRiskAversion(p.190)TheArrow-Prattcoefficientofabsoluteriskaversion(Definition6.C.3)Comparisonsacrossindividual(Proposition6.C.2)ComparisonsacrosswealthlevelsThecoefficientofrelativeriskaversion(Definition6.C.5)ECON501LectureNote9GameTheory1StructureTheStructureofGameTheExtensiveFormRepresentationofaGameStrategiesTheNormalFormRepresentationofaGameDominantandDominatedStrategiesRationalizableStrategiesTheStructureofGameTheplayerTherulesTheoutcomesThepayoffTheExtensiveFormRepresentationofGame(p.221)Thegametree:examplesPerfectinformationStrategies(p.228)Definition7.D.1:astrategyisacompletecontingentplanthatspecifieshowtheplayerwillactineverypossibledistinguishablecircumstancePurestrategy,Si:adeterministicstrategyTheNormalFormRepresentation(p.230)Definition7.D.2:ExamplesDominantandDominatedStrategies(p.236)Example:Prisoner’sDilemmaDefinition8.B.1,8B.2and8.B.3AstrictlydominantstrategyAstrictlydominatedstrategyAweaklydominatedstrategyIterateddeletionofstrictlydominatedstrategies,basedonprincipalofrationality,RationalizableStrategies(p.242)Definition8.C.1:strategysiisabestresponseforplayeritohisrivals’strategiesif
Definition:thestrategiesthatsurvivetheiteratedremovalofstrategiesthatareneverbeabestresponseareknownasplayer’srationalizablestrategiesExample8.C.1ECON501LectureNote10GameTheory2StructureNashEquilibriumBayesianNashEquilibriumSequentialRationality,BackwardInduction,andSubgamePerfectionNashEquilibrium(p.246)Definition8.D.1:astrategyprofiles=(s1,…,sI)constitutesaNashequilibriumifforeveryi=1,…,I,ExamplesIntuitionBayesianNashEquilibrium(p.253)Agameofimperfectinformation:naturemakesthefirstmove,choosingrealizationsoftherandomvariablesthatdetermineeachplayer’spreferencetype,andeachplayerobservestherealizationofonlyhisownrandomvariable.Definition8.E.1:BayesianNashequilibrium:ExamplesSequentialRationality(p.268)Example:incrediblethreatTheprincipleofsequentialrationality:aplayer’sstrategyshouldspecifyoptimalactionsateverypointinthegametreeBackwardinductioninfinitegamesofperfectinformationSubgameperfectNashequilibrium:aprofileofstrategiesisaSPNEifitinducesaNashequilibriumineverysubgame.ExamplesECON501LectureNote11MarketPowerStructureMonopolyPricingStaticModelsofOligopolyTheBertrandModelofPriceCompetitionTheCournotModelofQuantityCompetitionTheStackelbergModelofQuantityLeadershipThePriceLeadershipTheRepeatedBertrandModelMonopolyPricing(p.384)Monopolist’sdecisionproblemWelfarelossofmonopolyExampleBertrandModelofPriceCompetition(p.388)Thetwofirmssimultaneouslynametheirp1andp2.salesforfirmjaregivenby
Proposition12.C.1:ThereisauniqueNashequilibriumintheBertrandduopolymodel:bothfirmssettheirpricesequaltocost.CournotModelofQuantityCompetition(p.389)Firmj’smaximizationproblemgivenfirmk’soutputlevel:Proposition12.C.2:inanyNEoftheCournotduopolymodel,themarketpriceisgreaterthanc(thecompetitiveprice)andsmallerthanthemonopolyprice.ExampleStackelbergModelofQuantityLeadershipTheleader’s(firm1)problem:Thefollower’s(firm2)problem:Theleader’sprofitwillbehigherthanCournotmodel,andlessthancollusionprofit.MarketpricewillbelowerthanCournotmodel,andhigherthancompetitiveprice.PriceLeadershipThefollower’s(firm2)problem:Theleader’s(firm1)problem:theleaderfacesthe“residualdemandcurve”TheInfinitelyRepeatedBertrandDuopolyGame(p.400)SetupofgameNashreversionstrategy:firmscooperateuntilsomeonedeviation,andanydeviationtriggersapermanentretaliationinwhichbothfirmssettheirpriceequaltocost.Proposition12.D.1:TheNashreversionstrategyconstituteaSPNEoftheinfinitelyrepeatedBertrandduopolygameifandonlyifECON501LectureNote12GeneralEquilibrium1StructureParetoOptimalityCompetitive(Walrasian)EquilibriumPureExchangeOne-Consumer,One-ProducerEconomyParetoOptimality(p.312)Structure:Iconsumers.JproducersandLgoods,aneconomicallocation:Feasibility:Definition10.B.2:AfeasibleallocationisParetooptimalifthereisnootherallocationsuchthat:WalrasianEquilibrium(p.314)Definition10.B.3:Theallocation(x*,y*)andpricevectorp*constituteacompetitiveequilibriumifthefollowingconditionsaresatisfiedProfitMaximization:foreachfirm,y*solvesUtilityMaximization:foreachconsumer,x*solvesMarketclearing:foreachgoodlPureExchange(p.515)Basicsetup:noproductionUtilityMaximization:foreachconsumer,x*solvesMarketClearingTheWalrasianequilibrium:pricep*andallocationx*suchthatx*maximizestheconsumers’utilityunderbudgetconstraintPureExchange:theEdgeworthBoxTheEdgeworthboxTheoffercurveTheWalrasianequilibriumintheEdgeworthboxExamplePureExchange:WelfarePropertiesofWalrasian
EquilibriaDefinition15.B.2:ParetooptimalintheEdgeworthboxParetosetandthecontractcurveTheOne-Consumer,One-ProducerEconomy(p.525)Basicsetup:oneconsumer,oneproducer,twogoods,thelaboroftheconsumerandaconsumptiongoodproducedbythefirmsTheconsumer’sutilitymaximizationproblem:Theproducer’sprofitmaximizationproblem:Theoptimallabordemandisz(p,w);theoutputisq(p,w);theprofitisπ(p,w)TheOne-Consumer,One-ProducerEconomyConsumptionmarketclearing:Labormarketclearing:AWalrasianequilibrium:theallocation(x1*,x2*)andpricevector(p*,w*)whichmaximizetheconsumer’sutilityandproducer’sprofitandclearbothconsumptionmarketandlabormarket.ECON501LectureNote13GeneralEquilibrium2StructureBasicSetupTheEquilibriuminFactorMarketThe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 做文明有禮的人國(guó)旗下講話稿范文(6篇)
- 全國(guó)運(yùn)動(dòng)會(huì)開幕詞(10篇)
- 2024年新型城鎮(zhèn)化項(xiàng)目咨詢合同
- 校內(nèi)外交通安全廣播稿范文(3篇)
- 2024年授權(quán)代理商協(xié)議范本
- 2024年技術(shù)開發(fā)合作合同具體條款
- 代理進(jìn)口協(xié)議合同模板
- 住房車庫出租合同模板
- 2024年新中式住宅區(qū)售樓處建設(shè)合同
- 學(xué)技術(shù)合同模板6
- GUSS吞咽功能評(píng)價(jià)量表
- 美食之酸菜魚 ppt課件
- 雙層防護(hù)棚搭設(shè)專項(xiàng)施工方案
- 工程量確認(rèn)單格式
- MODF架跳纖規(guī)范_圖文
- 生產(chǎn)場(chǎng)所照明管理制度
- 小學(xué)三年級(jí)六班上學(xué)期班主任家長(zhǎng)會(huì)課件
- 和易充智能充電系統(tǒng)(PPT課件)
- 30MW光伏項(xiàng)目送出系統(tǒng)工程施工組織總設(shè)計(jì)1
- 建筑抗震設(shè)計(jì)規(guī)范2010
- 100以內(nèi)退位減法經(jīng)典實(shí)用
評(píng)論
0/150
提交評(píng)論