版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列計(jì)算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a102.如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為A.6 B.8 C.10 D.123.如圖是由四個(gè)相同的小正方形組成的立體圖形,它的俯視圖為()A. B. C. D.4.中國(guó)幅員遼闊,陸地面積約為960萬(wàn)平方公里,“960萬(wàn)”用科學(xué)記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1025.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.6.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個(gè)根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定7.如圖,是直角三角形,,,點(diǎn)在反比例函數(shù)的圖象上.若點(diǎn)在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-48.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.9.在某?!拔业闹袊?guó)夢(mèng)”演講比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績(jī)各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績(jī),還要了解這9名學(xué)生成績(jī)的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)10.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.關(guān)于x的一元二次方程ax2﹣x﹣=0有實(shí)數(shù)根,則a的取值范圍為________.12.如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為1cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要_____cm.13.如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____.14.用黑白兩種顏色的正六邊形地面磚按如圖所示的規(guī)律,拼成若干圖案:第4個(gè)圖案有白色地面磚______塊;第n個(gè)圖案有白色地面磚______塊.15.把多項(xiàng)式x3﹣25x分解因式的結(jié)果是_____16.關(guān)于x的分式方程=2的解為正實(shí)數(shù),則實(shí)數(shù)a的取值范圍為_____.三、解答題(共8題,共72分)17.(8分)如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長(zhǎng)線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長(zhǎng).18.(8分)無錫市新區(qū)某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為250元,每桶水的進(jìn)價(jià)是5元,規(guī)定銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)圖象如圖所示.(1)求日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系;(2)若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是多少?19.(8分)計(jì)算:.先化簡(jiǎn),再求值:,其中.20.(8分)如圖,已知AB是⊙O的弦,C是的中點(diǎn),AB=8,AC=,求⊙O半徑的長(zhǎng).21.(8分)定義:任意兩個(gè)數(shù)a,b,按規(guī)則c=b2+ab﹣a+7擴(kuò)充得到一個(gè)新數(shù)c,稱所得的新數(shù)c為“如意數(shù)”.若a=2,b=﹣1,直接寫出a,b的“如意數(shù)”c;如果a=3+m,b=m﹣2,試說明“如意數(shù)”c為非負(fù)數(shù).22.(10分)為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.23.(12分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時(shí),求BB′的長(zhǎng);(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時(shí),求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)24.已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)(1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點(diǎn)D,且PD=DB,若∠ACB=90°,求∠P的大小
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運(yùn)算性質(zhì)計(jì)算后利用排除法求解.【詳解】A、a2?a3=a5,錯(cuò)誤;B、(a2)3=a6,正確;C、不是同類項(xiàng),不能合并,錯(cuò)誤;D、a5+a5=2a5,錯(cuò)誤;故選B.【點(diǎn)睛】本題綜合考查了整式運(yùn)算的多個(gè)考點(diǎn),包括同底數(shù)冪的乘法、冪的乘方、合并同類項(xiàng),需熟練掌握且區(qū)分清楚,才不容易出錯(cuò).2、C【解析】
連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長(zhǎng),再再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,故AD的長(zhǎng)為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,∴AD的長(zhǎng)為CM+MD的最小值,∴△CDM的周長(zhǎng)最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點(diǎn)睛】本題考查的是軸對(duì)稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.3、B【解析】
根據(jù)俯視圖是從上往下看的圖形解答即可.【詳解】從上往下看到的圖形是:.故選B.【點(diǎn)睛】本題考查三視圖的知識(shí),解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.4、B【解析】試題分析:“960萬(wàn)”用科學(xué)記數(shù)法表示為9.6×106,故選B.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).5、D【解析】
首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.6、C【解析】
首先求出方程的根,再利用半徑長(zhǎng)度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個(gè)根,即為6,
∴點(diǎn)O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點(diǎn)睛】本題考核知識(shí)點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.7、D【解析】
要求函數(shù)的解析式只要求出點(diǎn)的坐標(biāo)就可以,過點(diǎn)、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點(diǎn)、作軸,軸,分別于、,設(shè)點(diǎn)的坐標(biāo)是,則,,,,,,,,,,,,因?yàn)辄c(diǎn)在反比例函數(shù)的圖象上,則,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)是,.故選:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問題,一般要轉(zhuǎn)化為求點(diǎn)的坐標(biāo)的問題,求出圖象上點(diǎn)的橫縱坐標(biāo)的積就可以求出反比例函數(shù)的解析式.8、B【解析】
根據(jù)題中給出的函數(shù)圖像結(jié)合一次函數(shù)性質(zhì)得出a<0,b>0,再由反比例函數(shù)圖像性質(zhì)得出c<0,從而可判斷二次函數(shù)圖像開口向下,對(duì)稱軸:>0,即在y軸的右邊,與y軸負(fù)半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過二、四象限,∴c<0,∴二次函數(shù)對(duì)稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對(duì)稱軸在y軸的右邊,與y軸負(fù)半軸相交,故答案為B.【點(diǎn)睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對(duì)稱軸、與y軸的交點(diǎn)坐標(biāo)等確定出a、b、c的情況是解題的關(guān)鍵.9、D【解析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù))的意義,9人成績(jī)的中位數(shù)是第5名的成績(jī).參賽選手要想知道自己是否能進(jìn)入前5名,只需要了解自己的成績(jī)以及全部成績(jī)的中位數(shù),比較即可.【詳解】由于總共有9個(gè)人,且他們的分?jǐn)?shù)互不相同,第5的成績(jī)是中位數(shù),要判斷是否進(jìn)入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點(diǎn)睛】本題考查了統(tǒng)計(jì)量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.10、D【解析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點(diǎn)睛】本題主要考查正比例函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k的關(guān)系.解答本題注意理解:直線y=kx所在的位置與k的符號(hào)有直接的關(guān)系.k>0時(shí),直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時(shí),直線必經(jīng)過二、四象限,y隨x的增大而減?。?、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、a≥﹣1且a≠1【解析】
利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個(gè)不等式的公共部分即可.【詳解】根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>1時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=1時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<1時(shí),方程無實(shí)數(shù)根.12、1【解析】
要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】解:將長(zhǎng)方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點(diǎn)之間線段最短,AB′==1cm.故答案為1.考點(diǎn):平面展開-最短路徑問題.13、(2,3)【解析】
作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,證明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得結(jié)果.【詳解】如圖,作AC⊥x軸于C,作A′C′⊥x軸,垂足分別為C、C′,∵點(diǎn)A、B的坐標(biāo)分別為(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴點(diǎn)A′的坐標(biāo)為(2,3).故答案為(2,3).【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點(diǎn)的坐標(biāo)的確定.解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.14、18塊(4n+2)塊.【解析】
由已知圖形可以發(fā)現(xiàn):前三個(gè)圖形中白色地磚的塊數(shù)分別為:6,10,14,所以可以發(fā)現(xiàn)每一個(gè)圖形都比它前一個(gè)圖形多4個(gè)白色地磚,所以可以得到第n個(gè)圖案有白色地面磚(4n+2)塊.【詳解】解:第1個(gè)圖有白色塊4+2,第2圖有4×2+2,第3個(gè)圖有4×3+2,所以第4個(gè)圖應(yīng)該有4×4+2=18塊,第n個(gè)圖應(yīng)該有(4n+2)塊.【點(diǎn)睛】此題考查了平面圖形,主要培養(yǎng)學(xué)生的觀察能力和空間想象能力.15、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點(diǎn)睛:此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.16、a<2且a≠1【解析】
將a看做已知數(shù),表示出分式方程的解,根據(jù)解為非負(fù)數(shù)列出關(guān)于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實(shí)數(shù),∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點(diǎn)睛】分式方程的解.三、解答題(共8題,共72分)17、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長(zhǎng)PO交圓于G點(diǎn),由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長(zhǎng)PO交圓于G點(diǎn),∵PF×PG=PC考點(diǎn):切線的判定;切割線定理.18、(1)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【解析】
(1)設(shè)日均銷售p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為:p=kx+b(k≠0),把(7,500),(12,250)代入,得到關(guān)于k,b的方程組,解方程組即可;(2)設(shè)銷售單價(jià)應(yīng)定為x元,根據(jù)題意得,(x-5)?p-250=1350,由(1)得到p=-50x+850,于是有(x-5)?(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,滿足7≤x≤12的x的值為所求;【詳解】(1)設(shè)日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=kx+b,根據(jù)題意得,解得k=﹣50,b=850,所以日均銷售量p(桶)與銷售單價(jià)x(元)的函數(shù)關(guān)系為p=﹣50x+850;(2)根據(jù)題意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合題意,舍去),∵銷售單價(jià)不得高于12元/桶,也不得低于7元/桶,∴x=13不合題意,答:若該經(jīng)營(yíng)部希望日均獲利1350元,那么銷售單價(jià)是9元.【點(diǎn)睛】本題考查了一元二次方程及一次函數(shù)的應(yīng)用,解題的關(guān)鍵是通過題目和圖象弄清題意,并列出方程或一次函數(shù),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問題.19、(1)1;(2)2-1.【解析】
(1)分別計(jì)算負(fù)指數(shù)冪、絕對(duì)值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根;(2)先把括號(hào)內(nèi)通分相減,再計(jì)算分式的除法,除以一個(gè)分式,等于乘它的分子、分母交換位置.【詳解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]?=?=,當(dāng)x=﹣2時(shí),原式===2-1.【點(diǎn)睛】本題考查負(fù)指數(shù)冪、絕對(duì)值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根以及分式的化簡(jiǎn)求值,解題關(guān)鍵是熟練掌握以上性質(zhì)和分式的混合運(yùn)算.20、5【解析】試題分析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設(shè)⊙O的半徑為r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相關(guān)數(shù)量求解即可得.試題解析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設(shè)⊙O的半徑為r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半徑為5.21、(1)4;(2)詳見解析.【解析】
(1)本題是一道自定義運(yùn)算題型,根據(jù)題中給的如意數(shù)的概念,代入即可得出結(jié)果(2)根據(jù)如意數(shù)的定義,求出代數(shù)式,分析取值范圍即可.【詳解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意數(shù)”c為非負(fù)數(shù)【點(diǎn)睛】本題考查了因式分解,完全平方式(m﹣1)2的非負(fù)性,難度不大.22、(1)大貨車用8輛,小貨車用7輛;(2)y=100x+1.(3)見解析.【解析】
(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運(yùn)輸152箱魚苗,列方程組求解;(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8-x)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為[7-(10-x)]輛,根據(jù)表格所給運(yùn)費(fèi),求出y與x的函數(shù)關(guān)系式;(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運(yùn)費(fèi)最少的貨車調(diào)配方案.【詳解】(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:.∴大貨車用8輛,小貨車用7輛.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x為整數(shù)).(3)由題意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且為整數(shù),∵y=100x+1,k=100>0,y隨x的增大而增大,∴當(dāng)x=5時(shí),y最小,最小值為y=100×5+1=9900(元).答:使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元.23、(1)5;(2)O'(,);(3)P'(,).【解析】
(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進(jìn)而確定出點(diǎn)P的坐標(biāo),再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 激光測(cè)距計(jì)儀表采購(gòu)合同范本
- 設(shè)備采購(gòu)與安裝協(xié)議
- 苗木采購(gòu)合同格式范文
- 家具選購(gòu)合同全解析策略
- 高利貸借款合同書樣本格式
- 投資合同協(xié)議撰寫
- 酒店用品供應(yīng)商采購(gòu)協(xié)議
- 機(jī)械設(shè)備采購(gòu)合同格式模板
- 房屋地基買賣合同模版
- 設(shè)計(jì)印刷服務(wù)合同協(xié)議書
- 勞務(wù)派遣用工管理辦法
- 部編人教版道德與法治八年級(jí)上冊(cè) 引用的名言警句1
- 藏傳佛教因明學(xué)通論
- 監(jiān)控驗(yàn)收單完整版本
- 2024湖南株洲市天元區(qū)招聘社區(qū)專職工作者筆試歷年典型考題及考點(diǎn)剖析附答案帶詳解
- 弱電智能化工程技術(shù)方案
- TZSA 225-2024 高導(dǎo)熱膜用石墨烯材料應(yīng)用指南
- 第七課《循環(huán)程序》教學(xué)設(shè)計(jì) 2023-2024學(xué)年新世紀(jì)版(2018)初中信息技術(shù)八年級(jí)上冊(cè)
- 人教版八年級(jí)音樂上冊(cè) 第二單元 《動(dòng)物世界》片頭曲教案
- 曲式與作品分析智慧樹知到期末考試答案章節(jié)答案2024年內(nèi)蒙古藝術(shù)學(xué)院
- 人工智能與未來教育智慧樹知到期末考試答案章節(jié)答案2024年麗水學(xué)院
評(píng)論
0/150
提交評(píng)論