2022年山東省淄博市臨淄區(qū)中考數學考前最后一卷含解析及點睛_第1頁
2022年山東省淄博市臨淄區(qū)中考數學考前最后一卷含解析及點睛_第2頁
2022年山東省淄博市臨淄區(qū)中考數學考前最后一卷含解析及點睛_第3頁
2022年山東省淄博市臨淄區(qū)中考數學考前最后一卷含解析及點睛_第4頁
2022年山東省淄博市臨淄區(qū)中考數學考前最后一卷含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若關于x的不等式組只有5個整數解,則a的取值范圍()A. B. C. D.2.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:13.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米4.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數圖象大致為()A.B.C.D.5.如果實數a=,且a在數軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.6.下列各點中,在二次函數的圖象上的是()A. B. C. D.7.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.8.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④9.將5570000用科學記數法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×10810.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁二、填空題(共7小題,每小題3分,滿分21分)11.為了綠化校園,30名學生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設男生有x人,女生有y人,根據題意,所列方程組正確的是()A. B. C. D.12.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點E,F(xiàn)分別在邊AB,AC上,將△AEF沿直線EF翻折,點A落在點P處,且點P在直線BC上.則線段CP長的取值范圍是____.13.在平面直角坐標系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當P點坐標為_____時,△PAB的面積最?。?4.如果關于x的方程x2+kx+34k2-3k+15.若關于x的方程x2﹣8x+m=0有兩個相等的實數根,則m=_____.16.在實數范圍內分解因式:x2y﹣2y=_____.17.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.三、解答題(共7小題,滿分69分)18.(10分)某校九年級數學測試后,為了解學生學習情況,隨機抽取了九年級部分學生的數學成績進行統(tǒng)計,得到相關的統(tǒng)計圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級ABCD請根據以上信息解答下列問題:(1)這次統(tǒng)計共抽取了名學生的數學成績,補全頻數分布直方圖;(2)若該校九年級有1000名學生,請據此估計該校九年級此次數學成績在B等級以上(含B等級)的學生有多少人?(3)根據學習中存在的問題,通過一段時間的針對性復習與訓練,若A等級學生數可提高40%,B等級學生數可提高10%,請估計經過訓練后九年級數學成績在B等級以上(含B等級)的學生可達多少人?19.(5分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.20.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.21.(10分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.22.(10分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統(tǒng)計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調查結果繪制成以下來不辜負不完整的統(tǒng)計圖.請你根據以上信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?23.(12分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數量的學生進行調查,并將所得數據進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數;若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業(yè)?24.(14分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數解,則不等式組的解集為3-2a<x<20,且整數解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個整數解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.2、B【解析】

可證明△DFE∽△BFA,根據相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.3、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.4、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.5、C【解析】分析:估計的大小,進而在數軸上找到相應的位置,即可得到答案.詳解:由被開方數越大算術平方根越大,即故選C.點睛:考查了實數與數軸的的對應關系,以及估算無理數的大小,解決本題的關鍵是估計的大小.6、D【解析】

將各選項的點逐一代入即可判斷.【詳解】解:當x=1時,y=-1,故點不在二次函數的圖象;當x=2時,y=-4,故點和點不在二次函數的圖象;當x=-2時,y=-4,故點在二次函數的圖象;故答案為:D.【點睛】本題考查了判斷一個點是否在二次函數圖象上,解題的關鍵是將點代入函數解析式.7、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數形結合思想的應用.8、C【解析】

根據正方形的判定定理即可得到結論.【詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【點睛】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.9、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確10、A【解析】

根據方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關鍵是掌握方差的定義進行解題.二、填空題(共7小題,每小題3分,滿分21分)11、A【解析】

該班男生有x人,女生有y人.根據題意得:,故選D.考點:由實際問題抽象出二元一次方程組.12、【解析】

根據點E、F在邊AB、AC上,可知當點E與點B重合時,CP有最小值,當點F與點C重合時CP有最大值,根據分析畫出符合條件的圖形即可得.【詳解】如圖,當點E與點B重合時,CP的值最小,此時BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當點F與點C重合時,CP的值最大,此時CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長的取值范圍是1≤CP≤5,故答案為1≤CP≤5.【點睛】本題考查了折疊問題,能根據點E、F分別在線段AB、AC上,點P在直線BC上確定出點E、F位于什么位置時PC有最大(?。┲凳墙忸}的關鍵.13、(-1,2)【解析】

因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯(lián)立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數圖象上點的坐標特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關鍵.14、-【解析】

由方程有兩個實數根,得到根的判別式的值大于等于0,列出關于k的不等式,利用非負數的性質得到k的值,確定出方程,求出方程的解,代入所求式子中計算即可求出值.【詳解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32則x12017x故答案為-23【點睛】此題考查了根的判別式,非負數的性質,以及配方法的應用,求出k的值是本題的突破點.15、1【解析】

根據判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.16、y(x+)(x﹣)【解析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數范圍內進行因式分解的式子的結果一般要分到出現(xiàn)無理數為止.17、【解析】

延長AD和BC交于點E,在直角△ABE中利用三角函數求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.三、解答題(共7小題,滿分69分)18、(1)1人;補圖見解析;(2)10人;(3)610名.【解析】

(1)用總人數乘以A所占的百分比,即可得到總人數;再用總人數乘以A等級人數所占比例可得其人數,繼而根據各等級人數之和等于總人數可得D等級人數,據此可補全條形圖;

(2)用總人數乘以(A的百分比+B的百分比),即可解答;

(3)先計算出提高后A,B所占的百分比,再乘以總人數,即可解答.【詳解】解:(1)本次調查抽取的總人數為15÷=1(人),則A等級人數為1×=10(人),D等級人數為1﹣(10+15+5)=20(人),補全直方圖如下:故答案為1.(2)估計該校九年級此次數學成績在B等級以上(含B等級)的學生有1000×=10(人);(3)∵A級學生數可提高40%,B級學生數可提高10%,∴B級學生所占的百分比為:30%×(1+10%)=33%,A級學生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計經過訓練后九年級數學成績在B以上(含B級)的學生可達610名.【點睛】考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質和矩形的性質以及三點共線,熟練掌握正方形的性質和矩形的性質,知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.20、﹣6+2【解析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.21、(1)見解析;(2)【解析】

(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;

(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.22、(1)補全圖形見解析;(2)B;(3)估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據被調查的總人數求出C情況的人數與B情況人數所占比例即可;(2)根據眾數的定義求解即可;(3)該年級學生中“經常隨手丟垃圾”的學生=總人數×C情況的比值.【詳解】(1)∵被調查的總人數為60÷30%=200人,∴C情況的人數為200﹣(60+130)=10人,B情況人數所占比例為×100%=65%,補全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數最多,所以眾數為B,故答案為B.(3)1500×5%=75,答:估計該年級學生中“經常隨手丟垃圾”的學生約有75人,就該年級經常隨手丟垃圾的學生人數看出仍需要加強公共衛(wèi)生教育、宣傳和監(jiān)督.【點睛】本題考查了眾數與扇形統(tǒng)計圖與條形統(tǒng)計圖,解題的關

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論