下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
華南理工大學(xué)土木與交通學(xué)院STRUCTURALYSISR.
C.
HIBBELER華南理工大學(xué)土木與交通學(xué)院YSIS:CHAPTER
8:
DISPLACEMENT
METHOD
OFSLOPE-DEFLECTION
EQUATIONS2華南理工大學(xué)土木與交通學(xué)院Chapter
Outline1.2.3.4.5.ysis:
General
ProceduresDisplacement
Method
ofSlope-Deflection
Equations
ysis
of
Beamsysis
of
Frames:
No
Sidesway
ysis
of
Frames:
Sidesway3華南理工大學(xué)土木與交通學(xué)院YSIS:8.1DISPLACEMENT
METHOD
OFGENERAL
PROCEDURES4華南理工大學(xué)土木與交通學(xué)院Displacement
Method
of
ysis:General
Procedures1
f11R1
f12
R2
......
f1n
Rn
02
f21R1
f22
R2
......
f2n
Rn
0n
fn1R1
fn2
R2
......
fnn
Rn
0Force
method
and
displacement
methodIn
force
method,
much
work
is
required
to
set
up
the
compatibilityequations,
and
furthermore
each
equation
written
involves
all
theunknowns,
making
it
difficult
to
solve
the
resulting
set
of
equations
unlessa
computer
is
availableForce
method
is
therefore
limited
to
structures
which
are
not
highlyindeterminateDisplacement
method
requires
less
work
both
to
write
the
necessaryequations
for
the
solution
of
a
problem
and
to
solve
these
equations
for
theunknown
displacements
and
associated
internal
loads5華南理工大學(xué)土木與交通學(xué)院Displacement
Method
ofGeneral
Proceduresysis:General
procedures
for
displacement
methodDisplacement
method
requires
satisfying
equilibrium
equations
for
thestructuresThe
loads
are
written
in
terms
of
the
unknown
displacements
by
using
theload-displacement
relationsThe
equilibrium
equations
are
solved
for
the
displacementsOnce
the
displacements
are
obtained,
the
unknown
loads
are
determinedusing
the
load-displacement
relationsCompatibility
equations
are
satisfied
automatically6華南理工大學(xué)院Displacement
Method
ofGeneral
Proceduresysis:Degrees
of
freedomThe
displacements
ofthe
nodeson
astructureare
referred
to
as
the
degrees
of
freedoms
forthe
structureIn
three
dimensions,
each
node
on
a
frame
orbeam
can
have
at
most
three
lineardisplacements
and
three
rotationaldisplacementsIn
two
dimensions,
each
node
can
have
at
mosttwo
linear
displacements
and
one
rotationaldisplacementNodal
displacements
may
be
restricted
by
thesupports,
or
due
to
assumptions
based
on
thebehavior
of
the
structure7華南理工大學(xué)土木與交通學(xué)院8.2SLOPE
–DEFLECTION
EQUATIONS8Slope-Deflection
EquationsGeneral
case
The
slope-deflection
method
is
so
named
since
it
relatesthe
unknown
slopes
and
deflections
to
momentsof
a
memberTo
develop
t eral
form
of
theslope-deflection
equations,
we
will
consider
thetypical
span
AB
of
the
continuous
beam
when
subjected
to
arbitrary
loading
andhaving
a
constant
EIWe
wish
to
relate
the
beam’s
internal
endmomentsMAB
and
MBA
in
terms
ofits
threedegrees
of
freedom,
namely,
its
angular
displacements
A
and
B
,
andlineardisplacement
?,
and
the
applied
loadsMoments
and
angular
displacements
will
be
considered
positive
when
they
actclockwise
on
thespanThe
linear
displacement
?is
considered
positive
as
shown,
since
thisdisplacementcauses
thecord
of
the
span
to
rotate
clockwiseTheslope-deflection
equations
can
be
obtained
byusing
the
principle
ofsuperposition by
considering
separa y
themoments
developed
at
each
supportdue
to
each
of
the
displacements,
A
,
B
and
?,
and
then
the
loads9Slope-Deflection
EquationsAngular
displacement
at
A,
A-
Consider
node
A
of
the
member
to
rotate
A
while
id
node
B
is
heldfixed
and
determine
the
moment
MAB
needed
to
cause
this
displacement-
The
problem
is
equivalent
to
how
to
determine
A
due
to
the
applied
coupleMAB,
which
can
be
solved
using
the
force
method1
L2
2
L2
3
EI20
2L3M
ABVAB
0
A
VAB
f
AAABAB
VEI
1
L2MM
ABA
BMAB=primary
structure+AVAB
LVABBredundant
VABappliedABL110Slope-Deflection
EquationsAngular
displacement
at
A,
A-
Consider
node
A
of
the
member
to
rotate
A
while
id
node
B
is
heldfixed
and
determine
the
moment
MAB
needed
to
cause
this
displacement-
The
problem
is
equivalent
to
how
to
determine
A
due
to
the
applied
coupleMAB,
which
can
be
solved
using
the
force
methodA
BMA
B1M
AB=ABprimary
structure+AABV
LABVBredundant
VAB
applied1ABL12ABAM
AB
M
LAB12AB4EI
2EI
V L
1EIMBAM
L
1EI4EI
LALA11Slope-Deflection
EquationsAngular
displacement
at
B,
B-
Similarly,
when
end
B
of
the
beam
rotates
to
its
final
position
while
end
Ais
held
fixed,
we
can
relate
the
applied
moment
MBA
to
the
angulardisplacement
B
and
the
reaction
moment
MAB
at
the
wallBABBBAL
2EI
ML
4EI
M12Slope-Deflection
EquationsRelative
linear
displacement,
?If
the
far
node
B
of
the
member
is
displaced
relative
to
A,
so
that
the
cordof
the
member
rotates
clockwise
and
yet
both
ends
do
not
rotate,
thenequal
but
opposite
moment
and
shear
reactions
are
developed
in
thememberMoment
MAB
and
MBA
can
be
related
to
the
displacement
?
using
the
forcemethod
M
6EI
L2ABBAM
MABABBABA13Slope-Deflection
EquationsFixed-end
moments-
The
fixed-end
moments
(FEM)AB
and
(FEM)BA
can
be
determined
using
theforce
methodMAB
(FEM
)ABMBA
(FEM
)BA14Slope-Deflection
EquationsSlope-deflection
equations-
If moments
due
to
each
displacementand
loading
are
added
together,
the
resultantmoments
at s
can
be
written
as:The
results
can
be
expressed
as
a
single
equationMN
2Ek
2N
F
3
(FEM
)NM
N
internal
moment
at
the
near-end
of
the
spanE,
k
modulus
of
elasticity
and
span
stiffness
N
,
F
near-end
and
far-end
slopes
or
angular
displacements
of
the
span
at
the
supports
span
rotation
of
its
cord
due
to
a
lineardisplacement(
FEM
)
N
fixed-end
moment
at
the
near-end
supportThe
slope-deflection
equation
is
applied
twice
for
eaember
span
(AB);that
is,
application
is
from
A
to
B
and
from
B
to
A
for
span
ABABA
BABM
2E
I
2
3
(FEM
)BAB
ABAM
2E
I
2
3
(FEM
)
L
L
L
L
15學(xué)院Pin-supported
end
spanSometimes
an
end
span
of
a
beam
or
frameis
supported
bya
pin
orroller
atits
far
endThe
moment
at
theroller
or
pin
iszeroProvided
the
angular
displacement
atthissupport
doesnothave
to
bedetermined,we
can
modify
t eral
slope-deflectionequation
so
that
it
hasto
beapplied
only
onceto
the
span
rather
than
twiceUsing
t eral
slope-deflection
equations,we
have-
From
the
second
equation,
it
can
be
seen
that
D
can
beexpressed
in
terms
ofC
andΨ-
Substitute
D
into
theequation,
we
get
the
modified
slope-deflectionequation-
This
is
onlyapplicable
for
end
span
with
far
end
pinned
or
roller
supportedSlope-Deflection
EquationsMCD
3Ek[C
]
(FEM
)CDCD
CDDC2(FEM
)
(FEM
)
1
(FEM
)11
2Ek[2C
D
3
]
(FEM
)CD
0
2Ek[2D
C
3
]
(FEM
)
DCD
=
[C
3
]
(FEM
)DC2
4EkMCD16華南理工大學(xué)土木與交通學(xué)院8.3YSIS
OF
BEAMES17華南理工大學(xué)土木與交通學(xué)院Label
all
the
supports
and
joints
(nodes)
in
order
to
identify
the
spans
ofthe
beam
or
frame
between
the
nodesCompatibility
at
the
nodes
is
maintained
provided
the
members
that
arefixed
connected
to
a
node
undergo
the
same
displacements
as
the
nodeSlope-deflection
equationsThe
slope-deflection
equations
relate
the
unknown
moments
applied
to
thenodes
to
the
displacements
of
the
nodes
for
any
span
of
the
structureApply
the
slope-deflection
equation
to
each
end
of
the
span,
therebygeneratin-
If
a
span
ato
slope-deflection
equations
for
each
spanof
a
continuous
beam
or
frame
is
pin
supported,
applythe
modified
slope-deflection
equation
only
to
the
restrained
end,
therebygenerating
one
slope-deflection
equation
for
the
spanysis
of
Beams:
General
ProceduresDegrees
of
freedom18華南理工大學(xué)土木與交通學(xué)院Equilibrium
equationsWrite
an
equilibrium
equation
for
each
unknown
degree
of
freedom
for
thestructureSubstitute
the
slope-deflection
equations
into
the
equilibrium
equationsand
solve
the
unknown
joint
displacementsysis
of
Beams:
General
Procedures19華南理工大學(xué)土木與交通學(xué)院ysis
of
BeamsExample
8.1Draw
the
shear
and
moment
diagrams
for
the
beam
where
EI
is
constant.20華南理工大學(xué)ysis
of
BeamsExample
8.1
(Solution)Degrees
of
freedomUnknown
angular
displacement,
BSlope-deflection
equations2
spans
must
be
considered
in
this
problem(FEM)AB=(FEM)BA=0
since
there
is
no
load
on
span
ABUsing
the
formulas
for
FEMs,
we
have:Since
A
and
C
are
fixed
support,
A=C=0Since
the
supports
do
not
settle
nor
are
they
displaced
up
ordown,
AB=BC=0Slope-deflection
equation-
Similarly,
we
have30
20BC30CB20(FEM
)
wL2
6(62
)
7.2
kN
m, (FEM
)
wL2
6(62
)
10.8
kN
m4NM
2E
I
2
3
(FEM
)
,
L
N
F
NABBM
2E
I
2(0)
8
B
3(0)
0
EI
10.82
33BA
BBC
BCBM
EI
,
M
2EI
-7.2
,
MB
EI
21華南理工大學(xué)ysis
of
BeamsExample
8.1
(Solution)Equilibrium
equationsConsider
the
moment
equilibrium
at
support
BHere
MBA
and
MBC
are
assumed
to
act
in
the
counterclockwise
direction
tobe
consistent
with
the
sign
convention
used
in
the
slope-deflectionequationsThe
beam
shears
contribute
negligible
moment
about
B
since
the
segmentis
of
differentiallengthThus,
we
have
7.2)
023
6.17
MBC
0M
BAEI
(
2EIBBBEI22華南理工大學(xué)土木與交通學(xué)院ysis
of
BeamsExample
8.1
(Solution)Equilibrium
equations-
Re-substituting
B
into
the
slope-deflection
equations
givesUsing
these
results,
the
shears
at of
spans
are
determined
fromequilibrium
equationsThe
free-body
diagram
of
the
entire
beam
and
the
shear
and
momentdiagrams
are
shownMCB
1.54
kN
m;
M
BA
3.09
kN
m;
3.09
kN
m;
12.86
kN
mM
ABM
BC23通華南理工大學(xué)學(xué)院24華南理工大學(xué)院252627華南理工大學(xué)土木與交通學(xué)院8.4YSIS
OF
FRAMES:
NO
SIDESWAY28華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
SideswayA
frame
will
not
sidesway
to
the
left
or
right
provided
it
is
properlyrestrainedNo
sidesway
will
occur
in
an
unrestrained
frame
provided
it
is
symmetricwith
respect
to
both
loading
and
geometryFor
both
cases
the
term
ψ
in
the
slope-deflection
equations
is
equal
to
zero,since
bending
does
not
cause
the
joints
to
have
a
linear
displacement29華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
SideswayExample
8.5Determine
the
moments
at
each
joint
of
the
frame.
EI
is
constant.30華南理工大學(xué)ysis
of
Frames:
No
SideswayExample
8.5
(Solution)Degrees
of
freedomUnknown
angular
displacements,
B
and
cSlope-deflection
equations3
spans
must
be
considered
in
this
case:
AB,
BC
and
CDFixed-end
moments96
965wL2
5wL2(FEM
)BC
80
kN
m, (FEM
)CB
80
kN
mNote
that
A
D
0
and
AB
BC
CD
0,
since
no
sidesway
will
occurSlope-deflection
equationMBA
0.333EIBMCBMDC
0.5EIC
0.25EIB
80
0.1667EIC
80,NNM
2E
I
2
3
FEM
L
N
F
M
AB
M
BC
MCD0.1667EIB
,
0.5EIB
0.25EIC0.333EIC
,31華南理工大學(xué)ysis
of
Frames:
No
SideswayExample
8.5
(Solution)Equilibrium
equations-
Considering
the
moment
equilibriumat
joints
B
and
C,
we
have:M
BA
M
BC
0-
Substituting
the
slope-deflectionequations
into
the
above
equations,we
get:0.833EIB
0.25EIC
800.833EIC
0.25EIB
80
MCD
0MCB
137.1BCEI
32華南理工大學(xué)土木與交通學(xué)院CABDExample
11.5
(Solution)Equilibrium
equations-
Re-substituting
B
and
c
into
the
slope-deflectionequations
givesysis
of
Frames:
No
SideswayM
AB
22.9
kN
m;MBA
45.7
kN
mMCB
45.7
kN
m
45.7
kN
m;
45.7
kN
m;
22.9
kN
mMBCMCDMDC33華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
Sidesway34華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
Sidesway35華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
Sidesway36華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
No
Sidesway37華南理工大學(xué)土木與交通學(xué)院8.5YSIS
OF
FRAMES:
SIDESWAY38華南理工大學(xué)土木與交通學(xué)院ysis
of
Frames:
SideswayA
frame
will
sidesway
when
it
or
the
loading
acting
on
it
is
nonsymmetricThe
loading
P
causes
an
unequal
moments
at
joint
B
and
CMBC
tends
to
displace
joint
B
to
the
rightMCB
tends
to
displace
joint
C
to
the
leftSince
MBC
>
MCB,
the
net
res
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版新能源項目配套柴油供應(yīng)及售后服務(wù)合同2篇
- 2025年按揭車輛交易風(fēng)險評估合同模板3篇
- 2024年重慶倉庫租賃合同:個人與儲存需求3篇
- 2024年版權(quán)合同范本:數(shù)字媒體作品授權(quán)2篇
- 2024年度物流配送中心債權(quán)保證抵押借款合同3篇
- 2024年版電梯安裝與維護(hù)綜合服務(wù)合同
- 2025年度局綜合樓專業(yè)害蟲防治與控制合同3篇
- 2024年軟件許可使用合同
- 2024年輸電塔運輸合同
- 二零二五年度健身教練專業(yè)測評及職業(yè)規(guī)劃合同3篇
- 高考日語基礎(chǔ)歸納總結(jié)與練習(xí)(一輪復(fù)習(xí))
- 裝配式混凝土建筑構(gòu)件識圖-疊合板識讀(裝配式混凝土建筑)
- 會計科目涉稅風(fēng)險點風(fēng)險
- 香椿矮化密植栽培
- GB/T 4214.3-2023家用和類似用途電器噪聲測試方法洗碗機的特殊要求
- 建設(shè)工程質(zhì)量控制講義三
- YY/T 0606.7-2008組織工程醫(yī)療產(chǎn)品第7部分:殼聚糖
- 2023年遼寧軌道交通職業(yè)學(xué)院高職單招(英語)試題庫含答案解析
- GB/T 29076-2021航天產(chǎn)品質(zhì)量問題歸零實施要求
- DL-T 5190.1-2022 電力建設(shè)施工技術(shù)規(guī)范 第1部分:土建結(jié)構(gòu)工程(附條文說明)
- 殯葬服務(wù)人才需求調(diào)研報告
評論
0/150
提交評論