2023屆山東省濟南歷城區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023屆山東省濟南歷城區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023屆山東省濟南歷城區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023屆山東省濟南歷城區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023屆山東省濟南歷城區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,BC=8,高AD=6,點E,F(xiàn)分別在AB,AC上,點G,F(xiàn)在BC上,當(dāng)四邊形EFGH是矩形,且EF=2EH時,則矩形EFGH的周長為()A. B. C. D.2.一次會議上,每兩個參加會議的人都握了一次手,有人統(tǒng)(總)計一共握了次手,這次參加會議到會的人數(shù)是人,可列方程為:()A. B. C. D.3.一元二次方程的根是()A. B. C. D.4.如圖,BC是⊙O的弦,OA⊥BC,∠AOB=55°,則∠ADC的度數(shù)是()A.25° B.55° C.45° D.27.5°5.如圖,四邊形和是以點為位似中心的位似圖形,若,則四邊形與四邊形的面積比為()A. B. C. D.6.如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)7.如圖是半徑為2的⊙O的內(nèi)接正六邊形ABCDEF,則圓心O到邊AB的距離是()A.2 B.1 C. D.8.下列說法中錯誤的是()A.成中心對稱的兩個圖形全等B.成中心對稱的兩個圖形中,對稱點的連線被對稱軸平分C.中心對稱圖形的對稱中心是對稱點連線的中心D.中心對稱圖形繞對稱中心旋轉(zhuǎn)180°后,都能與自身重合9.下列式子中,y是x的反比例函數(shù)的是()A. B. C. D.10.已知關(guān)于x的一元二次方程的一個根為1,則m的值為()A.1 B.-8 C.-7 D.7二、填空題(每小題3分,共24分)11.不等式組的解集是_____________.12.如圖,,,與交于點,則是相似三角形共有__________對.13.如果x:y=1:2,那么=_____.14.已知函數(shù)的圖象如圖所示,點P是y軸負(fù)半軸上一動點,過點P作y軸的垂線交圖象于A、B兩點,連接OA、OB.下列結(jié)論;①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;②當(dāng)點P坐標(biāo)為(0,﹣3)時,△AOB是等腰三角形;③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;④當(dāng)點P移動到使∠AOB=90°時,點A的坐標(biāo)為(2,﹣).其中正確的結(jié)論為___.15.已知中,,,,,垂足為點,以點為圓心作,使得點在外,且點在內(nèi),設(shè)的半徑為,那么的取值范圍是______.16.如圖,在Rt△ABC中,∠BCA=90o,∠BAC=30o,BC=4,將Rt△ABC繞A點順時針旋轉(zhuǎn)90o得到Rt△ADE,則BC掃過的陰影面積為___.17.已知是關(guān)于x的一元二次方程的一個解,則此方程的另一個解為____.18.已知兩個相似三角形與的相似比為1.則與的面積之比為________.三、解答題(共66分)19.(10分)已知拋物線與軸交于A,B兩點(A在B左邊),與軸交于C點,頂點為P,OC=2AO.(1)求與滿足的關(guān)系式;(2)直線AD//BC,與拋物線交于另一點D,△ADP的面積為,求的值;(3)在(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點,分別過M、N且與拋物線僅有一個公共點的兩條直線交于點G,求OG長的最小值.20.(6分)如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).(1)求這個二次函數(shù)的表達(dá)式;(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC①求線段PM的最大值;②當(dāng)△PCM是以PM為一腰的等腰三角形時,求點P的坐標(biāo).21.(6分)“五一勞動節(jié)大酬賓!”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標(biāo)金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.(1)該顧客至多可得到________元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.22.(8分)如圖,矩形的對角線與相交于點.延長到點,使,連結(jié).(1)求證:四邊形是平行四邊形;(2)若,,請直接寫出平行四邊形的周長.23.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,線段的端點、均在小正方形的頂點上.(1)在方格紙中畫出以為一條直角邊的等腰直角,頂點在小正方形的頂點上.(2)在方格紙中畫出的中線,將線段繞點順時針旋轉(zhuǎn)得到線段,畫出旋轉(zhuǎn)后的線段,連接,直接寫出四邊形的面積.24.(8分)如圖,在正方形中,點是的中點,連接,過點作交于點,交于點.(1)證明:;(2)連接,證明:.25.(10分)如圖,點E在的中線BD上,.(1)求證:;(2)求證:.26.(10分)有四張背面相同的紙牌A、B、C、D,其正面上方分別畫有四個不同的幾何圖形,下方寫有四個不同算式,小明將四張紙牌背面朝上洗勻后摸出一張,將其余3張洗勻后再摸出一張.(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌用A、B、C、D表示);(2)求摸出的兩張紙牌的圖形是中心對稱圖形且算式也正確的紙牌的概率.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】通過證明△AEF∽△ABC,可得,可求EH的長,即可求解.【詳解】∵EF∥BC,∴△AEF∽△ABC,∴,∵EF=2EH,BC=8,AD=6,∴∴EH=,∴EF=,∴矩形EFGH的周長=故選:C.【點睛】本題考查了相似三角形的應(yīng)用,根據(jù)相似三角形對應(yīng)邊成比例建立方程是解題的關(guān)鍵.2、B【分析】設(shè)這次會議到會人數(shù)為x,根據(jù)每兩個參加會議的人都相互握了一次手且整場會議一共握了45次手,即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設(shè)這次會議到會人數(shù)為x,

依題意,得:.

故選:B.【點睛】本題考查了由實際問題抽象出一元二次方程,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.3、D【解析】x2?3x=0,x(x?3)=0,∴x1=0,x2=3.故選:D.4、D【分析】欲求∠ADC,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解.【詳解】∵A、B、C、D是⊙O上的四點,OA⊥BC,∴弧AC=弧AB(垂徑定理),∴∠ADC=∠AOB(等弧所對的圓周角是圓心角的一半);又∠AOB=55°,∴∠ADC=27.5°.故選:D.【點睛】本題考查垂徑定理、圓周角定理.關(guān)鍵是將證明弧相等的問題轉(zhuǎn)化為證明所對的圓心角相等.5、C【解析】由位似圖的面積比等于位似比的平方可得答案.【詳解】∵即四邊形和的位似比為∴四邊形和的面積比為故選:C.【點睛】本題考查了位似圖的性質(zhì),熟記位似圖的面積比等于位似比的平方是解題的關(guān)鍵.6、A【解析】過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,依據(jù)△AOB和△A1OB1相似,且相似比為1:2,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標(biāo)為(2,-4).【詳解】解:如圖,過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,

∵點B的坐標(biāo)為(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比為1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴點B1的坐標(biāo)為(2,-4),

故選:A.【點睛】本題考查的是位似變換的性質(zhì),正確理解位似與相似的關(guān)系,記憶關(guān)于原點位似的兩個圖形對應(yīng)點坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.7、C【分析】過O作OH⊥AB于H,根據(jù)正六邊形ABCDEF的性質(zhì)得到∠AOB==60°,根據(jù)等腰三角形的性質(zhì)得到∠AOH=30°,AH=AB=1,于是得到結(jié)論.【詳解】解:過O作OH⊥AB于H,在正六邊形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故選:C.【點睛】本題主要考查了正多邊形和圓,等腰三角形的性質(zhì),解直角三角形,正確的作出輔助線是解題的關(guān)鍵.8、B【解析】試題分析:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱中心對稱,中心對稱圖形的對稱中心是對稱點連線的交點,根據(jù)中心對稱圖形的定義和性質(zhì)可知A、C、D正確,B錯誤.故選B.考點:中心對稱.9、C【分析】根據(jù)反比例函數(shù)的定義,反比例函數(shù)的一般式是y=(k≠0),即可判定各函數(shù)的類型是否符合題意.【詳解】A、是正比例函數(shù),錯誤;B、不是反比例函數(shù),錯誤;C、是反比例函數(shù),正確;D、不是反比例函數(shù),錯誤.故選:C.【點睛】本題考查反比例函數(shù)的定義特點,反比例函數(shù)解析式的一般形式為:y=(k≠0).10、D【解析】直接利用一元二次方程的解的意義將x=1代入求出答案即可.【詳解】∵關(guān)于x的一元二次方程x2+mx?8=0的一個根是1,∴1+m?8=0,解得:m=7.故答案選:D.【點睛】本題考查的知識點是一元二次方程的解,解題的關(guān)鍵是熟練的掌握一元二次方程的解.二、填空題(每小題3分,共24分)11、【分析】根據(jù)解一元一次不等式組的方法求解即可;【詳解】解:由不等式①得,,由不等式②得,x<4,故不等式組的解集是:;故答案為:.【點睛】本題主要考查了一元一次不等式組,掌握一元一次不等式是解題的關(guān)鍵.12、6【分析】圖中三角形有:△AEG,△ADC,△CFG,△CBA,因為,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中組合,據(jù)此可得出答案.【詳解】圖中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6個組合分別為:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案為6.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.13、【分析】根據(jù)合比性質(zhì),可得答案.【詳解】解:,即.故答案為.【點睛】考查了比例的性質(zhì),利用了和比性質(zhì):.14、②③④.【分析】①錯誤.根據(jù)x1<x2<0時,函數(shù)y隨x的增大而減小可得;②正確.求出A、B兩點坐標(biāo)即可解決問題;③正確.設(shè)P(0,m),則B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;④正確.設(shè)P(0,m),則B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PB?PA,列出方程即可解決問題.【詳解】解:①錯誤.∵x1<x2<0,函數(shù)y隨x是增大而減小,∴y1>y2,故①錯誤.②正確.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正確.③正確.設(shè)P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA=+=7.5,故③正確.④正確.設(shè)P(0,m),則B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PB?PA,∴m2=﹣?(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正確.∴②③④正確,故答案為②③④.【點睛】本題考查反比例函數(shù)綜合題、等腰三角形的判定、兩點間距離公式、相似三角形的判定和性質(zhì)、待定系數(shù)法等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù),構(gòu)建方程解決問題.15、【分析】先根據(jù)勾股定理求出AB的長,進而得出CD的長,再求出AD,BD的長,由點與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,

∴AB==1.

∵CD⊥AB,∴CD=.

∵AD?BD=CD2,

設(shè)AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.

∵點A在圓外,點B在圓內(nèi),∴BD<r<AD,

∴r的范圍是,

故答案為:.【點睛】本題考查的是點與圓的位置關(guān)系,熟知點與圓的三種位置關(guān)系是解答此題的關(guān)鍵.16、4π【分析】先利用含30度的直角三角形三邊的關(guān)系得到AB=2BC=8,AC=BC=,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠CAE=∠BAD=90°,然后根據(jù)扇形的面積公式,利用BC掃過的陰影面積=S扇形BAD-S△CAE進行計算.【詳解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC繞A點順時針旋轉(zhuǎn)90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC掃過的陰影面積=S扇形BAD-S△CAE=.故答案為:4π.【點睛】本題考查了扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=(其中l(wèi)為扇形的弧長);求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.也考查了旋轉(zhuǎn)的性質(zhì).17、【分析】將x=-3代入原方程,解一元二次方程即可解題.【詳解】解:將x=-3代入得,a=-1,∴原方程為,解得:x=1或-3,【點睛】本題考查了含參的一元二次方程的求解問題,屬于簡單題,熟悉概念是解題關(guān)鍵.18、2【分析】根據(jù)相似三角形的面積比等于相似比的平方,即可求得答案.【詳解】解:∵兩個相似三角形的相似比為1,

∴這兩個三角形的面積之比為2.

故答案為:2.【點睛】此題考查了相似三角形的性質(zhì).注意熟記定理是解此題的關(guān)鍵.三、解答題(共66分)19、(1);(2);(3).【分析】(1)將拋物線解析式進行因式分解,可求出A點坐標(biāo),得到OA長度,再由C點坐標(biāo)得到OC長度,然后利用OC=2AO建立等量關(guān)系即可得到關(guān)系式;(2)利用待定系數(shù)法求出直線BC的k,根據(jù)平行可知AD直線的斜率k與BC相等,可求出直線AD解析式,與拋物線聯(lián)立可求D點坐標(biāo),過P作PE⊥x軸交AD于點E,求出PE即可表示△ADP的面積,從而建立方程求解;(3)為方便書寫,可設(shè)拋物線解析式為:,設(shè),,過點M的切線解析式為,兩拋物線與切線聯(lián)立,由可求k,得到M、N的坐標(biāo)滿足,將(1,-1)代入,推出G為直線上的一點,由垂線段最短,求出OG垂直于直線時的值即為最小值.【詳解】解:(1)令y=0,,解得,令x=0,則∵,A在B左邊∴A點坐標(biāo)為(-m,0),B點坐標(biāo)為(4m,0),C點坐標(biāo)為(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C點坐標(biāo)為(0,-2m)設(shè)BC直線為,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴設(shè)直線AD為,代入A(-m,0)得,,∴∴直線AD為直線AD與拋物線聯(lián)立得,,解得或∴D點坐標(biāo)為(5m,3m)又∵∴頂點P坐標(biāo)為如圖,過P作PE⊥x軸交AD于點E,則E點橫坐標(biāo)為,代入直線AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的條件下,可設(shè)拋物線解析式為:,設(shè),,過點M的切線解析式為,將拋物線與切線解析式聯(lián)立得:,整理得,∵,∴方程可整理為∵只有一個交點,∴整理得即解得∴過M的切線為同理可得過N的切線為由此可知M、N的坐標(biāo)滿足將代入整理得將(1,-1)代入得在(2)的條件下,拋物線解析式為,即∴整理得∴G點坐標(biāo)滿足,即G為直線上的一點,當(dāng)OG垂直于直線時,OG最小,如圖所示,直線與x軸交點H(5,0),與y軸交點F(0,)∴OH=5,OF=,F(xiàn)H=∵∴∴OG的最小值為.【點睛】本題考查二次函數(shù)與一次函數(shù)的綜合問題,難度很大,需要掌握二次函數(shù)與一次函數(shù)的圖像與性質(zhì)和較強的數(shù)形結(jié)合能力.20、(1)二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).【分析】(1)根據(jù)待定系數(shù)法,可得答案;(2)①根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)等腰三角形的定義,可得方程,根據(jù)解方程,可得答案.【詳解】(1)將A,B,C代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)設(shè)BC的解析式為y=kx+b,將B,C的坐標(biāo)代入函數(shù)解析式,得,解得,BC的解析式為y=x﹣3,設(shè)M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,當(dāng)n=時,PM最大=;②當(dāng)PM=PC時,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合題意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);當(dāng)PM=MC時,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合題意,舍),n2=3+(不符合題意,舍),n3=3-,n2﹣2n﹣3=2-4,P(3-,2-4);綜上所述:P(2,﹣3)或(3-,2﹣4).【點睛】本題考查了二次函數(shù)的綜合題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰三角形等知識,綜合性較強,解題的關(guān)鍵是認(rèn)真分析,弄清解題的思路有方法.21、(1)70;(2)畫樹狀圖見解析,該顧客所獲得購物券的金額不低于50元的概率1【解析】試題分析:(1)由題意可得該顧客至多可得到購物券:50+20=70(元);(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與該顧客所獲得購物券的金額不低于50元的情況,再利用概率公式即可求得答案.試題解析:(1)則該顧客至多可得到購物券:50+20=70(元);(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,該顧客所獲得購物券的金額不低于50元的有6種情況,∴該顧客所獲得購物券的金額不低于50元的概率為:61222、(1)見解析;(2)1.【分析】(1)因為,所以,利用一組對邊平行且相等即可證明;(2)利用矩形的性質(zhì)得出,進而利用求出CD的值,然后利用勾股定理求出AD的值,即可求周長【詳解】(1)∵是矩形∴∴四邊形是平行四邊形;(2)∵是矩形∴∵四邊形是平行四邊形∴平行四邊形的周長為【點睛】本題主要考查平行四邊形的判定及性質(zhì),矩形的性質(zhì),掌握平行四邊形的判定及性質(zhì)是解題的關(guān)鍵.23、(1)見解析;(2)圖形見解析,10【解析】(1)直接利用等腰直角三角形的性質(zhì)得出C點位置;

(2)直接利用三角形中線的定義按要求作圖,結(jié)合網(wǎng)格可得出四邊形BDC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論