《最短路徑問題》軸對(duì)稱課件_第1頁(yè)
《最短路徑問題》軸對(duì)稱課件_第2頁(yè)
《最短路徑問題》軸對(duì)稱課件_第3頁(yè)
《最短路徑問題》軸對(duì)稱課件_第4頁(yè)
《最短路徑問題》軸對(duì)稱課件_第5頁(yè)
已閱讀5頁(yè),還剩93頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

最短路徑問題最短路徑問題如圖所示,從A地到B地有三條路可供選擇,你會(huì)選走哪條路最近?你的理由是什么?知識(shí)回顧選第②條兩點(diǎn)之間,線段最短如圖所示,從A地到B地有三條路可供選擇,你會(huì)選走哪條路最近?已知:如圖,A,B在直線L的兩側(cè),在l上求一點(diǎn)P,使得PA+PB最?。畠牲c(diǎn)在一條直線異側(cè)這是為什么呢??jī)牲c(diǎn)之間,線段最短連接AB,線段AB與直線l的交點(diǎn)P,就是所求.已知:如圖,A,B在直線L的兩側(cè),在l上求一點(diǎn)P,使得PA+探究相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海倫.有一天,一位將軍專程拜訪海倫,求教一個(gè)百思不得其解的問題:從圖中的A地出發(fā),到一條筆直的河邊l飲馬,然后到B地.到河邊什么地方飲馬可使他所走的路線全程最短?lAB探究相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海將軍飲馬問題精通數(shù)學(xué)、物理學(xué)的海倫稍加思索,利用軸對(duì)稱的知識(shí)回答了這個(gè)問題.這個(gè)問題后來被稱為“將軍飲馬問題”你能將這個(gè)問題抽象為數(shù)學(xué)問題嗎?lAB將軍飲馬問題精通數(shù)學(xué)、物理學(xué)的海倫稍加思索,利用軸對(duì)稱的探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能要自己的語(yǔ)言重新描述一下問題嗎?探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能要自己的語(yǔ)言重新描述一下問題嗎?CC是l上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC+BC最???探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最小?一開始的時(shí)候我們就討論過點(diǎn)A,B在直線異側(cè)的情況,你還記得是怎么做的嗎?連接兩點(diǎn),交點(diǎn)就是所求同側(cè)的情況也能直連接兩點(diǎn)嗎?不行探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最???能不能把點(diǎn)在同側(cè)的問題轉(zhuǎn)化為點(diǎn)在異側(cè)的問題呢?提示:將點(diǎn)B“移”到l的另一側(cè)B′處,得滿足直線l上的任意一點(diǎn)C,都保持CB與CB′的長(zhǎng)度相等.你想到怎么做了嗎?探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最???作法:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;連接AB′,與直線l相交于點(diǎn)C.則點(diǎn)C即為所求.你能證明此時(shí)AC+BC最短嗎?B’探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)證明證明此時(shí)AC+CB最短證明:如圖,在直線l上任取一點(diǎn)C′(與點(diǎn)C不重合),連接AC′,BC′,B′C′.由軸對(duì)稱的性質(zhì)知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′,∵AC′+B′C′>AB′,∴AC′+BC′>AC+BC,即AC+BC最短.證明證明此時(shí)AC+CB最短證明:如圖,在直線l上任取一點(diǎn)歸納總結(jié)條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)定點(diǎn)和直線上一個(gè)動(dòng)點(diǎn)問題特點(diǎn)求線段和最小求解思路利用軸對(duì)稱,化折為直

求解原理兩點(diǎn)之間,線段最短歸納總結(jié)條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M,同時(shí)向A,B兩個(gè)居民小區(qū)送電.(1)如果居民小區(qū)A,B在主干線l的兩旁,如圖(1)所示,那么分支點(diǎn)M在什么地方時(shí)總線路最短?在圖上標(biāo)注位置,并說明理由.例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M,同時(shí)向A,B兩個(gè)居民小區(qū)送電.(2)如果居民小區(qū)A,B在主干線l的同旁,如圖(2)所示,那么分支點(diǎn)M在什么地方時(shí)總線路最短?在圖上標(biāo)注位置,并說明理由.作A的對(duì)稱點(diǎn)可以嗎?B’例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M練習(xí)如圖,P,Q是△ABC的邊AB,AC上的兩定點(diǎn),在BC上求作一點(diǎn)M,使△PMQ的周長(zhǎng)最短.提示:這本質(zhì)上是“兩定一動(dòng)”

求線段和最小的將軍飲馬問題.練習(xí)如圖,P,Q是△ABC的邊AB,AC上的兩定點(diǎn),在BC上練習(xí)如圖,一個(gè)旅游船從大橋AB的P處前往山腳下的Q處接游客,然后將游客送往河岸BC上,再返回P處,請(qǐng)畫出旅游船的最短路徑.提示1:先把問題抽象為數(shù)學(xué)問題.提示2:這本質(zhì)上是“兩定一動(dòng)”

求線段和最小的將軍飲馬問題.練習(xí)如圖,一個(gè)旅游船從大橋AB的P處前往山腳下的Q處接游造橋選址問題如圖,A、B兩地在一條河的兩岸,現(xiàn)要在河上建一座橋MN,橋造在何處才能使從A到B的路徑AMNB最短?(假設(shè)河的兩岸是平行的直線,橋要與河垂直)你能把這個(gè)問題抽象成一個(gè)數(shù)學(xué)問題嗎?造橋選址問題如圖,A、B兩地在一條河的兩岸,現(xiàn)要在河上建一座抽象可以把河的兩岸看成兩條平行線a和b,N為直線b上的一個(gè)動(dòng)點(diǎn),MN垂直于直線b,交直線a于點(diǎn)M,當(dāng)點(diǎn)N在直線b的什么位置時(shí),AM+MN+NB最?。砍橄罂梢园押拥膬砂犊闯蓛蓷l平行線a和b,N為直線b上的一個(gè)動(dòng)分析這又是求線段和最小的問題,你能想到什么呢?能變成這種基本類型就好了AM,MN,NB這三條線段的長(zhǎng)度都會(huì)變化嗎?只有AM和NB會(huì)變,MN是不變的.所以當(dāng)AM+NB最小時(shí),AM+MN+NB最?。治鲞@又是求線段和最小的問題,你能想到什么呢?能變成這種基本思考怎么把這個(gè)問題轉(zhuǎn)化為基本類型呢?你能證明這個(gè)結(jié)論嗎?將AM沿著垂直于河岸的方向平移一個(gè)河寬的距離到A'N.現(xiàn)在就變成基本類型了.怎么確定取最小時(shí)的N點(diǎn)呢?連接A’B,與直線b的交點(diǎn)就是所求.思考怎么把這個(gè)問題轉(zhuǎn)化為基本類型呢?你能證明這個(gè)結(jié)論嗎?將A證明證明:如圖,在直線b上取一個(gè)不與N重合的點(diǎn)N’,作M’N’⊥a于點(diǎn)M’,連接AM’,BN’,A’N’.由平移的性質(zhì)可知,AM’=A’N’,AM=A’N∵A’N’+N’B>A’B∴AM’+N’B>AM+NB∴AM’+N’B>AM+NB∴AM’+M’N’+N’B>AM+MN+NB證明證明:如圖,在直線b上取一個(gè)不與N重合的點(diǎn)N’,作M’N歸納總結(jié)造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的距離之和問題特點(diǎn)求解思路求解原理求線段和最小利用平移,轉(zhuǎn)移線段兩點(diǎn)之間,線段最短歸納總結(jié)造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的將軍飲馬問題的變式已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.提示1:利用軸對(duì)稱,化折為直.提示2:分別作A點(diǎn)關(guān)于OM,ON的對(duì)稱點(diǎn).將軍飲馬問題的變式已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在將軍飲馬問題的變式答案:分別作點(diǎn)A關(guān)于OM,ON的對(duì)稱點(diǎn)A′,A″;連接A′,A″,分別交OM,ON于點(diǎn)B、點(diǎn)C,則點(diǎn)B、點(diǎn)C即為所求.已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。畬④婏嬹R問題的變式答案:分別作點(diǎn)A關(guān)于OM,ON的對(duì)稱點(diǎn)A′將軍飲馬問題的變式如圖,牧區(qū)內(nèi)有一家牧民,點(diǎn)A處有一個(gè)馬廄,點(diǎn)B處是他的家,

是草地的邊沿,

是一條筆直的河流.每天,牧民要從馬廄牽出馬來,先去草地上讓馬吃草,再到河邊飲馬,然后回到家B處.請(qǐng)?jiān)趫D上畫出牧民行走的最短路線(保留作圖痕跡).將軍飲馬問題的變式如圖,牧區(qū)內(nèi)有一家牧民,點(diǎn)A處有一個(gè)馬廄,將軍飲馬問題的變式如圖,已知∠AOB,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),(1)要使得△PEF的周長(zhǎng)最小,試在圖上確定點(diǎn)E、F的??????????位置;(2)若OP=4,要使得△PEF的周長(zhǎng)為4,則∠AOB=_____°.答案:(2)30°.將軍飲馬問題的變式如圖,已知∠AOB,P是∠AOB內(nèi)部的一個(gè)角內(nèi)一點(diǎn)出發(fā)的折線如圖,點(diǎn)A是∠MON內(nèi)的一點(diǎn),在射線OM上作點(diǎn)??P,使PA與點(diǎn)P到射線ON的距離之和最小.提示:試一試對(duì)稱.答案:作點(diǎn)A關(guān)于OM的對(duì)稱點(diǎn)A’,然后過A’作ON的垂線,交OM于P,交ON于Q.A’Q最短的原理是什么?垂線段最短角內(nèi)一點(diǎn)出發(fā)的折線如圖,點(diǎn)A是∠MON內(nèi)的一點(diǎn),在射線OM角內(nèi)一點(diǎn)出發(fā)的折線如圖,在直角三角形BCD中,若點(diǎn)M、N分別是線段BD、BC上的兩個(gè)動(dòng)點(diǎn),請(qǐng)?jiān)趫D上找到CM+MN最小時(shí),M,N點(diǎn)的位置.提示:試一試對(duì)稱.答案:作點(diǎn)C關(guān)于BD的對(duì)稱點(diǎn)C’,然后過C’作BC的垂線,交BD于M,交BC于N.角內(nèi)一點(diǎn)出發(fā)的折線如圖,在直角三角形BCD中,若點(diǎn)M、N分別總結(jié)這節(jié)課我們學(xué)到了什么?條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)定點(diǎn)和直線上一個(gè)動(dòng)點(diǎn)問題特點(diǎn)求線段和最小求解思路利用軸對(duì)稱,化折為直求解原理兩點(diǎn)之間,線段最短總結(jié)這節(jié)課我們學(xué)到了什么?條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬總結(jié)這節(jié)課我們還學(xué)到了什么?造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的距離之和問題特點(diǎn)求解思路求解原理求線段和最小利用平移,轉(zhuǎn)移線段兩點(diǎn)之間,線段最短總結(jié)這節(jié)課我們還學(xué)到了什么?造橋選址問題條件特點(diǎn)平行間的垂線美術(shù)字與軸對(duì)稱美術(shù)字與軸對(duì)稱利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案等腰三角形中相等的線段等腰三角形中相等的線段復(fù)習(xí)鞏固下列圖形是軸對(duì)稱圖形嗎?如果是,找出它們的對(duì)稱軸.復(fù)習(xí)鞏固下列圖形是軸對(duì)稱圖形嗎?如果是,找出它們的對(duì)稱軸.復(fù)習(xí)鞏固畫出下列軸對(duì)稱圖形的對(duì)稱軸復(fù)習(xí)鞏固畫出下列軸對(duì)稱圖形的對(duì)稱軸復(fù)習(xí)鞏固如圖,D,E分別是AB,AC的中點(diǎn),CD⊥AB,垂足為D,BE⊥AC,垂足為E.求證AC=AB.復(fù)習(xí)鞏固如圖,D,E分別是AB,AC的中點(diǎn),CD⊥AB,復(fù)習(xí)鞏固如圖所示的點(diǎn)A,B,C,D,E中,哪兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱?哪兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱?點(diǎn)C和點(diǎn)E關(guān)于x軸對(duì)稱嗎?為什么?復(fù)習(xí)鞏固如圖所示的點(diǎn)A,B,C,D,E中,哪兩個(gè)點(diǎn)關(guān)于x復(fù)習(xí)鞏固如圖,在△ABC中,∠ABC=50°,∠ACB=80°,延長(zhǎng)CB至D,使DB=BA,延長(zhǎng)BC至E,使CE=CA,連接AD,AE.求∠D,∠E,∠DAE的度數(shù).復(fù)習(xí)鞏固如圖,在△ABC中,∠ABC=50°,∠ACB復(fù)習(xí)鞏固如圖,AD=BC,AC=BD,求證:△EAB是等腰三角形.復(fù)習(xí)鞏固如圖,AD=BC,AC=BD,求證:△EAB是等復(fù)習(xí)鞏固復(fù)習(xí)鞏固綜合應(yīng)用試確定如圖所示的正多邊形的對(duì)稱軸的條數(shù),一般地,一個(gè)正n邊形有多少條對(duì)稱軸?綜合應(yīng)用試確定如圖所示的正多邊形的對(duì)稱軸的條數(shù),一般地,一個(gè)綜合應(yīng)用如圖,從圖形Ι

到圖形Ⅱ是進(jìn)行了平移還是軸對(duì)稱?如果是軸對(duì)稱,找出對(duì)稱軸;如果是平移,是怎樣平移?綜合應(yīng)用如圖,從圖形Ι

到圖形Ⅱ是進(jìn)行了平移還是軸對(duì)稱?如果綜合應(yīng)用如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.求證:AD垂直平分EF.綜合應(yīng)用如圖,AD是△ABC的角平分線,DE,DF分別是綜合應(yīng)用如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F(xiàn),使AD=BE=CF.求證△DEF是等邊三角形.綜合應(yīng)用如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E拓廣探索在紙上畫五個(gè)點(diǎn),使任意三個(gè)點(diǎn)組成的三角形都是等腰三角形.這五個(gè)點(diǎn)應(yīng)該怎樣畫?拓廣探索在紙上畫五個(gè)點(diǎn),使任意三個(gè)點(diǎn)組成的三角形都是等腰三角拓廣探索如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC至E,使CE=CD.求證DB=DE.拓廣探索如圖,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC拓廣探索如圖,△ABC是等腰三角形,AC=BC,△BDC和△ACE分別為等邊三角形,AE與BD相較于F,連接CF并延長(zhǎng),交AB于點(diǎn)G.求證:G為AB的中點(diǎn).拓廣探索如圖,△ABC是等腰三角形,AC=BC,△BDC拓廣探索如圖,牧馬人從A地出發(fā),先到草地邊某一處牧馬,再到河邊飲馬,然后回到B處,請(qǐng)畫出最短路徑.拓廣探索如圖,牧馬人從A地出發(fā),先到草地邊某一處牧馬,再到河最短路徑問題最短路徑問題如圖所示,從A地到B地有三條路可供選擇,你會(huì)選走哪條路最近?你的理由是什么?知識(shí)回顧選第②條兩點(diǎn)之間,線段最短如圖所示,從A地到B地有三條路可供選擇,你會(huì)選走哪條路最近?已知:如圖,A,B在直線L的兩側(cè),在l上求一點(diǎn)P,使得PA+PB最?。畠牲c(diǎn)在一條直線異側(cè)這是為什么呢??jī)牲c(diǎn)之間,線段最短連接AB,線段AB與直線l的交點(diǎn)P,就是所求.已知:如圖,A,B在直線L的兩側(cè),在l上求一點(diǎn)P,使得PA+探究相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海倫.有一天,一位將軍專程拜訪海倫,求教一個(gè)百思不得其解的問題:從圖中的A地出發(fā),到一條筆直的河邊l飲馬,然后到B地.到河邊什么地方飲馬可使他所走的路線全程最短?lAB探究相傳,古希臘亞歷山大里亞城里有一位久負(fù)盛名的學(xué)者,名叫海將軍飲馬問題精通數(shù)學(xué)、物理學(xué)的海倫稍加思索,利用軸對(duì)稱的知識(shí)回答了這個(gè)問題.這個(gè)問題后來被稱為“將軍飲馬問題”你能將這個(gè)問題抽象為數(shù)學(xué)問題嗎?lAB將軍飲馬問題精通數(shù)學(xué)、物理學(xué)的海倫稍加思索,利用軸對(duì)稱的探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能要自己的語(yǔ)言重新描述一下問題嗎?探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能要自己的語(yǔ)言重新描述一下問題嗎?CC是l上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC+BC最???探究將A,B兩地抽象為兩個(gè)點(diǎn),將河l抽象為一條直線.你能探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最???一開始的時(shí)候我們就討論過點(diǎn)A,B在直線異側(cè)的情況,你還記得是怎么做的嗎?連接兩點(diǎn),交點(diǎn)就是所求同側(cè)的情況也能直連接兩點(diǎn)嗎?不行探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最???能不能把點(diǎn)在同側(cè)的問題轉(zhuǎn)化為點(diǎn)在異側(cè)的問題呢?提示:將點(diǎn)B“移”到l的另一側(cè)B′處,得滿足直線l上的任意一點(diǎn)C,都保持CB與CB′的長(zhǎng)度相等.你想到怎么做了嗎?探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)C在l的什么位置時(shí),AC與CB的和最???作法:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;連接AB′,與直線l相交于點(diǎn)C.則點(diǎn)C即為所求.你能證明此時(shí)AC+BC最短嗎?B’探究如圖,點(diǎn)A,B在直線l的同側(cè),點(diǎn)C是直線上的一個(gè)動(dòng)證明證明此時(shí)AC+CB最短證明:如圖,在直線l上任取一點(diǎn)C′(與點(diǎn)C不重合),連接AC′,BC′,B′C′.由軸對(duì)稱的性質(zhì)知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′,∵AC′+B′C′>AB′,∴AC′+BC′>AC+BC,即AC+BC最短.證明證明此時(shí)AC+CB最短證明:如圖,在直線l上任取一點(diǎn)歸納總結(jié)條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)定點(diǎn)和直線上一個(gè)動(dòng)點(diǎn)問題特點(diǎn)求線段和最小求解思路利用軸對(duì)稱,化折為直

求解原理兩點(diǎn)之間,線段最短歸納總結(jié)條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M,同時(shí)向A,B兩個(gè)居民小區(qū)送電.(1)如果居民小區(qū)A,B在主干線l的兩旁,如圖(1)所示,那么分支點(diǎn)M在什么地方時(shí)總線路最短?在圖上標(biāo)注位置,并說明理由.例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M,同時(shí)向A,B兩個(gè)居民小區(qū)送電.(2)如果居民小區(qū)A,B在主干線l的同旁,如圖(2)所示,那么分支點(diǎn)M在什么地方時(shí)總線路最短?在圖上標(biāo)注位置,并說明理由.作A的對(duì)稱點(diǎn)可以嗎?B’例題某供電部門準(zhǔn)備在輸電干線上連接一個(gè)分支線路,分支點(diǎn)為M練習(xí)如圖,P,Q是△ABC的邊AB,AC上的兩定點(diǎn),在BC上求作一點(diǎn)M,使△PMQ的周長(zhǎng)最短.提示:這本質(zhì)上是“兩定一動(dòng)”

求線段和最小的將軍飲馬問題.練習(xí)如圖,P,Q是△ABC的邊AB,AC上的兩定點(diǎn),在BC上練習(xí)如圖,一個(gè)旅游船從大橋AB的P處前往山腳下的Q處接游客,然后將游客送往河岸BC上,再返回P處,請(qǐng)畫出旅游船的最短路徑.提示1:先把問題抽象為數(shù)學(xué)問題.提示2:這本質(zhì)上是“兩定一動(dòng)”

求線段和最小的將軍飲馬問題.練習(xí)如圖,一個(gè)旅游船從大橋AB的P處前往山腳下的Q處接游造橋選址問題如圖,A、B兩地在一條河的兩岸,現(xiàn)要在河上建一座橋MN,橋造在何處才能使從A到B的路徑AMNB最短?(假設(shè)河的兩岸是平行的直線,橋要與河垂直)你能把這個(gè)問題抽象成一個(gè)數(shù)學(xué)問題嗎?造橋選址問題如圖,A、B兩地在一條河的兩岸,現(xiàn)要在河上建一座抽象可以把河的兩岸看成兩條平行線a和b,N為直線b上的一個(gè)動(dòng)點(diǎn),MN垂直于直線b,交直線a于點(diǎn)M,當(dāng)點(diǎn)N在直線b的什么位置時(shí),AM+MN+NB最小?抽象可以把河的兩岸看成兩條平行線a和b,N為直線b上的一個(gè)動(dòng)分析這又是求線段和最小的問題,你能想到什么呢?能變成這種基本類型就好了AM,MN,NB這三條線段的長(zhǎng)度都會(huì)變化嗎?只有AM和NB會(huì)變,MN是不變的.所以當(dāng)AM+NB最小時(shí),AM+MN+NB最?。治鲞@又是求線段和最小的問題,你能想到什么呢?能變成這種基本思考怎么把這個(gè)問題轉(zhuǎn)化為基本類型呢?你能證明這個(gè)結(jié)論嗎?將AM沿著垂直于河岸的方向平移一個(gè)河寬的距離到A'N.現(xiàn)在就變成基本類型了.怎么確定取最小時(shí)的N點(diǎn)呢?連接A’B,與直線b的交點(diǎn)就是所求.思考怎么把這個(gè)問題轉(zhuǎn)化為基本類型呢?你能證明這個(gè)結(jié)論嗎?將A證明證明:如圖,在直線b上取一個(gè)不與N重合的點(diǎn)N’,作M’N’⊥a于點(diǎn)M’,連接AM’,BN’,A’N’.由平移的性質(zhì)可知,AM’=A’N’,AM=A’N∵A’N’+N’B>A’B∴AM’+N’B>AM+NB∴AM’+N’B>AM+NB∴AM’+M’N’+N’B>AM+MN+NB證明證明:如圖,在直線b上取一個(gè)不與N重合的點(diǎn)N’,作M’N歸納總結(jié)造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的距離之和問題特點(diǎn)求解思路求解原理求線段和最小利用平移,轉(zhuǎn)移線段兩點(diǎn)之間,線段最短歸納總結(jié)造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的將軍飲馬問題的變式已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。崾?:利用軸對(duì)稱,化折為直.提示2:分別作A點(diǎn)關(guān)于OM,ON的對(duì)稱點(diǎn).將軍飲馬問題的變式已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在將軍飲馬問題的變式答案:分別作點(diǎn)A關(guān)于OM,ON的對(duì)稱點(diǎn)A′,A″;連接A′,A″,分別交OM,ON于點(diǎn)B、點(diǎn)C,則點(diǎn)B、點(diǎn)C即為所求.已知:如圖A是銳角∠MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。畬④婏嬹R問題的變式答案:分別作點(diǎn)A關(guān)于OM,ON的對(duì)稱點(diǎn)A′將軍飲馬問題的變式如圖,牧區(qū)內(nèi)有一家牧民,點(diǎn)A處有一個(gè)馬廄,點(diǎn)B處是他的家,

是草地的邊沿,

是一條筆直的河流.每天,牧民要從馬廄牽出馬來,先去草地上讓馬吃草,再到河邊飲馬,然后回到家B處.請(qǐng)?jiān)趫D上畫出牧民行走的最短路線(保留作圖痕跡).將軍飲馬問題的變式如圖,牧區(qū)內(nèi)有一家牧民,點(diǎn)A處有一個(gè)馬廄,將軍飲馬問題的變式如圖,已知∠AOB,P是∠AOB內(nèi)部的一個(gè)定點(diǎn),點(diǎn)E、F分別是OA、OB上的動(dòng)點(diǎn),(1)要使得△PEF的周長(zhǎng)最小,試在圖上確定點(diǎn)E、F的??????????位置;(2)若OP=4,要使得△PEF的周長(zhǎng)為4,則∠AOB=_____°.答案:(2)30°.將軍飲馬問題的變式如圖,已知∠AOB,P是∠AOB內(nèi)部的一個(gè)角內(nèi)一點(diǎn)出發(fā)的折線如圖,點(diǎn)A是∠MON內(nèi)的一點(diǎn),在射線OM上作點(diǎn)??P,使PA與點(diǎn)P到射線ON的距離之和最小.提示:試一試對(duì)稱.答案:作點(diǎn)A關(guān)于OM的對(duì)稱點(diǎn)A’,然后過A’作ON的垂線,交OM于P,交ON于Q.A’Q最短的原理是什么?垂線段最短角內(nèi)一點(diǎn)出發(fā)的折線如圖,點(diǎn)A是∠MON內(nèi)的一點(diǎn),在射線OM角內(nèi)一點(diǎn)出發(fā)的折線如圖,在直角三角形BCD中,若點(diǎn)M、N分別是線段BD、BC上的兩個(gè)動(dòng)點(diǎn),請(qǐng)?jiān)趫D上找到CM+MN最小時(shí),M,N點(diǎn)的位置.提示:試一試對(duì)稱.答案:作點(diǎn)C關(guān)于BD的對(duì)稱點(diǎn)C’,然后過C’作BC的垂線,交BD于M,交BC于N.角內(nèi)一點(diǎn)出發(fā)的折線如圖,在直角三角形BCD中,若點(diǎn)M、N分別總結(jié)這節(jié)課我們學(xué)到了什么?條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬問題直線同側(cè)的兩個(gè)定點(diǎn)和直線上一個(gè)動(dòng)點(diǎn)問題特點(diǎn)求線段和最小求解思路利用軸對(duì)稱,化折為直求解原理兩點(diǎn)之間,線段最短總結(jié)這節(jié)課我們學(xué)到了什么?條件特點(diǎn)簡(jiǎn)稱為:兩定一動(dòng)

將軍飲馬總結(jié)這節(jié)課我們還學(xué)到了什么?造橋選址問題條件特點(diǎn)平行間的垂線段的端點(diǎn)到兩側(cè)定點(diǎn)的距離之和問題特點(diǎn)求解思路求解原理求線段和最小利用平移,轉(zhuǎn)移線段兩點(diǎn)之間,線段最短總結(jié)這節(jié)課我們還學(xué)到了什么?造橋選址問題條件特點(diǎn)平行間的垂線美術(shù)字與軸對(duì)稱美術(shù)字與軸對(duì)稱利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案利用軸對(duì)稱設(shè)計(jì)圖案等腰三角形中相等的線段等腰三角形中相等的線段復(fù)習(xí)鞏固下列圖形是軸對(duì)稱圖形嗎?如果是,找出它們的對(duì)稱軸.復(fù)習(xí)鞏固下列圖形是軸對(duì)稱圖形嗎?如果是,找出它們的對(duì)稱軸.復(fù)習(xí)鞏固畫出下列軸對(duì)稱圖形的對(duì)稱軸復(fù)習(xí)鞏固畫出下列軸對(duì)稱圖形的對(duì)稱軸復(fù)習(xí)鞏固如圖,D,E分別是AB,AC的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論