版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
11DFTAlgorithmImplementation(P449)★Goertzel’sAlgorithm★Decimation-in-TimeFFTAlgorithmDIT-FFT★Decimation-in-FrequencyFFTAlgorithmDIF-FFT★
InverseDFTComputation★SlidingDiscreteFourierTransform★DFTComputationOveraNarrowFrequencyBand111.1ComputationoftheDiscreteFourierTransformSuppose:x[n]inputsignalwithlengthN
(11.1)(11.2)21.ThenumberofmultiplicationsandadditionsinimplementingtheDFTdirectly.11.1ComputationoftheDiscreteFourierTransformDFT:IDFT:x[n]
maybecomplex,eachX[k](or
x[n])needcomputing:
complexmultiplications:
Ntimes
complexadditions:
N-1times3sothetotalX[k](or
x[n]withnumberN)needcomputing:
complexmultiplications:
N2times
complexadditions:
N(N-1)times.Therefore,eachX[k]:Realmultiplications:4Ntimes,Realadditions:4N-2times.11.1ComputationoftheDiscreteFourierTransform4So
totalX[k]needcomputation:realmultiplications:4N2timesrealadditions:
N(4N-2)times.Ncomplexmultiplicationcomplexaddition16256240102499264409640321281638416256
102410485761047552Ifonetimecomplexmultiplications:100andonetimecomplexadditions:20then,11.1ComputationoftheDiscreteFourierTransform52.ThesymmetryandperiodicitypropertiesofWNkn
:(1)
complexconjugatesymmetry(2)
periodicityinnandkThus,thenumberofmultiplicationcanbereducedby approximatelyafactorof2.11.1ComputationoftheDiscreteFourierTransform611.1.2Cooley-TukeyFFTAlgorithmsThebasicideabehindallfastalgorithmsforcomputingthediscreteFouriertransform(DFT),commonlycalledthefastFouriertransform(FFT)algorithms,istodecomposesuccessivelytheN-pointDFTcomputationintocomputationsofsmaller-sizeDFTandtotakeadvantageoftheperiodicityandsymmetrypropertiesofthecomplexnumber.7Suppose:N=2υeveninteger,1.AlgorithmprincipleDecimation-in-TimeFFTAlgorithm(DITFFT)8whereDecimation-in-TimeFFTAlgorithm(DITFFT)9SupposeN=8X0[0]x1[r]=x[2r+1]N/2-pointDFTN/2-pointDFTX0[1]X0[2]X0[3]X1[0]X1[1]X1[2]X1[3]X[0]X[1]X[2]X[3]X[4]X[5]X[6]X[7]x[0]x[2]x[4]x[6]x[1]x[3]x[5]x[7]x0[r]=x[2r]Figure11.5Decimation-in-TimeFFTAlgorithm(DITFFT)10N/4-pointDFTx[0]x[4]X0[1]X0[2]X0[3]X0[0]WN/20=WN0WN/21=
WN2WN/23=WN6WN/22=
WN4N/4-pointDFTx[2]x[6]Decimation-in-TimeFFTAlgorithm(DITFFT)11X[1]X[2]X[3]X[4]X[5]X[0]X[6]X[7]WN0WN1WN2WN3WN4WN5WN6WN7WN0WN2WN6WN4WN0WN2WN6WN4N/4-pointDFTN/4-pointDFTN/4-pointDFTN/4-pointDFTx[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]Figure11.7Decimation-in-TimeFFTAlgorithm(DITFFT)12x[0]x[1]W20=WN0=1W21=WNN/2=-1Figure11.8For2-pointDFTDecimation-in-TimeFFTAlgorithm(DITFFT)13X[4]X[5]X[6]X[7]WN4WN5WN6WN7WN0WN2WN6WN4x[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]WN0WN0WN4WN4X[0]WN0WN2WN6WN4X[1]X[2]X[3]WN0WN1WN2WN3WN0WN0WN4WN4Figure11.9Decimation-in-TimeFFTAlgorithm(DITFFT)14Thetypicalcomputationintheupperfigureisshownasfollowing:Sothesimplificationofthebutterflyisgivenasfollowing,:butterflyflowgraphWNlWN(l+N/2)Figure11.10Figure11.11WN
l-1Decimation-in-TimeFFTAlgorithm(DITFFT)15x[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]WN0WN0WN0WN0-1-1-1-1WN2WN0WN2-1-1WN0-1-1X[1]X[2]X[3]X[4]X[5]X[0]X[6]X[7]WN0WN1WN2WN3-1-1-1-1Figure11.12Decimation-in-TimeFFTAlgorithm(DITFFT)162.ThenumberofcomplexmultiplicationandcomplexadditionsforFFTstages:butterfliesofeachstage:eachbutterfly:one-timecomplexmultiplicationandtwo-timecomplexadditionsN-pointFFT:timescomplexmultiplicationand
timescomplexadditionsComputingDFTdirectly:timescomplexmultiplicationandtimescomplexadditionsWN
l-1(m-1)ststagemststageDecimation-in-TimeFFTAlgorithm(DITFFT)17FFT:complexmultiplication:times
complexadditions:timesComputingDFTdirectly:complexmultiplications:timescomplexadditions:timesForexample:
Ifonetimecomplexmultiplications:100andonetimecomplexadditions:20then,computingDFTdirectly:FFT:Decimation-in-TimeFFTAlgorithm(DITFFT)183.Iterativeformulas(supplement)0tharrayinputx[n]tharrayoutputX[k]x[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]WN0WN0WN0WN0-1-1-1-1WN2WN0WN2-1-1WN0-1-1X[1]X[2]X[3]X[4]X[5]X[0]X[6]X[7]WN0WN1WN2WN3-1-1-1-1Decimation-in-TimeFFTAlgorithm(DITFFT)19WNl-1Ψ
m-1[i]Ψ
m-1[i+dm]Ψ
m[i]Ψ
m[i+dm]
ithline(i+dm)thlineΨ
m-1[i]theuppernodeofinputs;Ψ
m-1[i+dm]thelowernodeofinputs;Ψ
m
[i]theuppernodeofoutputs;Ψ
m[i+dm]thelowernodeofoutputs;dmthebutterflydistance;mnumberofarray(i.e.numberofstage)WNltheweightofbutterflyDecimation-in-TimeFFTAlgorithm(DITFFT)20butterflydistanceofmthstage(numberofbutterflyforeachgroup)Where:numberofgroupforeachstageDecimation-in-TimeFFTAlgorithm(DITFFT)21Example1:Decimation-in-TimeFFTAlgorithm(DITFFT)22Example2:Problem:Whenm=4,(1)Howmanybutterflygroups?(2)Howmanybutterfliesineachgroup?(3)Writedownall.(1)(2)(8butterfliesineachgroup)(3)orDecimation-in-TimeFFTAlgorithm(DITFFT)234.In-PlaceComputation(同址計算或原位計算)Advantagesofin-placecomputation:Weneedn’ttoopenanothermemorytostoretheoutputofeachstage,becausetheformerdatawewillnotuseagaininlatercomputation.
savingintheoverallmemoryunitsWN
l-1Decimation-in-TimeFFTAlgorithm(DITFFT)245.Orderofinputsequencex[n]Infigure11.12,orderofinputsequenceis:
mn000(0)000(0)001(1)100(4)010(2)010(2)011(3)110(6)100(4)001(1)101(5)101(5)110(6)011(3)111(7)111(7)Decimation-in-TimeFFTAlgorithm(DITFFT)25Decimation-in-TimeFFTAlgorithm(DITFFT)26DIT-FFTflowgraphforinputinbit-reversedandoutputinnormalorder.x[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]WN0WN0WN0WN0-1-1-1-1WN2WN0WN2-1-1WN0-1-1X[1]X[2]X[3]X[4]X[5]X[0]X[6]X[7]WN0WN1WN2WN3-1-1-1-1Decimation-in-TimeFFTAlgorithm(DITFFT)276.Alternativeform
DIT-FFTflowgraphforinputinnormalorderandoutputinbit-reversedorder(順入倒出)in-placecomputationWN0WN0WN0WN0WN0WN2WN2WN0WN2WN1WN3x[0]x[1]x[2]x[3]x[4]x[5]x[6]x[7]X[0]X[4]X[2]X[6]X[1]X[5]X[3]X[7]-1-1-1WN0-1-1-1-1-1-1-1-1-1Decimation-in-TimeFFTAlgorithm(DITFFT)28Decimation-in-FrequencyFFTAlgorithm(DIFFFT)1.AlgorithmprincipleSuppose:N=2υeveninteger29Decimation-in-FrequencyFFTAlgorithm(DIFFFT)30Letx0[n]=x[n]+x[n+N/2],x1[n]=(x[n]-x[n+N/2])Decimation-in-FrequencyFFTAlgorithm(DIFFFT)31Theflowgraphisshownbelow(Fig.11.15):N/2-pointDFTN/2-pointDFTX[2]X[4]X[6]X[1]X[3]X[0]WN0WN1WN2WN3X[7]X[5]x[0]x[1]x[2]x[3]x[4]x[5]x[6]x[7]x0[0]-1-1-1-1Fig.11.15(N=8)x0[1]x0[2]x0[3]x1[0]x1[1]x1[2]x1[3]Decimation-in-FrequencyFFTAlgorithm(DIFFFT)32x[4]x[1]x[2]x[3]x[5]x[0]x[6]x[7]-1-1-1-1N/4-pointDFTX[0]X[4]N/4-pointDFTX[2]X[6]N/4-pointDFTX[1]X[5]N/4-pointDFTX[3]X[7]WN0WN0WN2WN2WN1WN2WN3WN0-1-1-1-1Decimation-in-FrequencyFFTAlgorithm(DIFFFT)33The2-pointDFT:-1Xr-1[p]Xr-1[q]Xr[p]Xr[q]WN0=1x[0]x[1]X[1]X[0]Nowwegivethewholeflowgraph,seeFig.11.16Decimation-in-FrequencyFFTAlgorithm(DIFFFT)34WN0WN0WN0WN0WN0WN2WN2X[0]X[4]X[2]X[6]X[1]X[5]X[3]X[7]-1-1-1WN0-1WN0WN1WN2WN3-1-1-1-1x[0]x[1]x[2]x[3]x[4]x[5]x[6]x[7]-1-1-1-1Figure11.16DIF-FFTflowgraphforinputinnormalorderandoutputinbit-reversedorder.in-placecomputation
Decimation-in-FrequencyFFTAlgorithm(DIFFFT)35complexmultiplication:times
complexadditions:timesCompareFig.11.16toFig.11.12,wemayobtainthefollowingconclusion:Twoflowgraphsarejusttransposedeachother.2.IterativeformulasXv[i]=Xv-1[i]+Xv-1[i+dm]Xv[i+dm]=(Xv-1[i]-Xv-1[i+dm])WNl-1Xv-1[i]Xv-1[i+dm]Xv[i]Xv[i+dm]numberofgroupforeachstageDecimation-in-FrequencyFFTAlgorithm(DIFFFT)363.AlternativeformWN0WN0WN0WN0WN0WN2WN2WN0WN2WN1WN3X[0]X[1]X[2]X[3]X[4]X[5]X[6]X[7]x[0]x[4]x[2]x[6]x[1]x[5]x[3]x[7]-1-1-1WN0-1-1-1-1-1-1-1-1-1Figure9.22DIF-FFTflowgraphforinputinbit-reversedorderandoutputinnormalorder.
in-placecomputationDecimation-in-FrequencyFFTAlgorithm(DIFFFT)37Comparisonoffourflowgraphs:1.Fourflowgraphshavesamenumberofcomplexmultiplicationsandcomplexadditions.2.Fplexmultiplications:complexadditions:3.DIT-FFTandDIF-FFTaretransposedeachother.4.Fourflowgraphsneedallsortingorder.5.DIT-FFTandDIF-FFThavedifferentiterativeformulas.Decimation-in-FrequencyFFTAlgorithm(DIFFFT)3811.1.3InverseDFTComputationAnFFTalgorithmforcomputingtheDFTsamplescanalsebeusedtocalculateefficientlytheinverseDFT(IDFT)(11.29)(11.30)(11.31)39InverseDFTcomputationisshownbelow:(11.31)11.1.3InverseDFTComputation4011.4SlidingDiscreteFourierTransformIfNisthelengthofthesubset,wecomputetheN-pointDFTofthefinite-lengthsegment,{x[n],x[n-1],…,x[n-N+1]},insidealength-Nslidingwindow.TheDFTcomputationisrepeatedforeachincreasingvalueofnbyadvancingthewindowonesampleforeachcomputation.slidingdiscreteFouriertransformorrunningdiscreteFouriertransform
ToindicatethetimedependencyoftheDFTsamples,wedenotethek-thDFTsampleattimeinstantnasSk[n].(11.58)41(11.58)11.4SlidingDiscreteFourierTransform42Thesystemfunctionis(11.60)Figure11.2111.4SlidingDiscreteFourierTransform4311.5DFTComputationOveraNarrowFrequencyBandInapplicationsrequiringthecomputationoftheDFTsamplesoveraspecifiedrange.Forverylargelength,thecostofcomputingallDFTsamplesmaybeprohibitivelyhigh.11.5.1ZoomFFTThezoomFFTcanbeusedtocomputethesamplesofanN-pointDFTX[k]ofalength-Nsequencex[n]inasmallrangeofvaluesofthefrequencyindexk,,whereAssume:N=KRLet4411.5.1ZoomFFT
isbasicallyther-thsub-sequenceoflength-kobtainedbydown-samplingx[n]byafactorR.(11.61)where(11.62)Let
then
(11.63)45(11.63)where(11.64)11.5.1ZoomFFT4611.5.2ChirpFourierTransform(CFT)1.Algorithmprinciple:Letx[n]N-pointsequence,X(e
jω)Fouriertransformofx[n].ConsidertheevaluationofK
samplesofX(e
jω)thatareequallyspacedinangleontheunitcircle.Re(z)jIm(z)unitcircleω0(K-1)ΔωFigure11.22Δω1ωk=ω0+kΔω,
k=0,1,…,K-1(11.69)where:
ω0thestartfrequency
Δωthefrequencyincrement(canbechosenarbitrarily)47Re(z)jIm(z)unitcircleω0(K-1)ΔωFigure11.22Δω1ωk=ω0+k(Δω),
k=0,1,…,K-1(11.69)Ifweletω0=0,andM=NandΔω=2π/N,wecangetDFT.then11.5.2ChirpFourierTransform(CFT)48Letnandkreplacedbyeachother,wegetaveryfamiliarform:11.5.2ChirpFourierTransform(CFT)49
×
×
X(e
jωn)x[n]u[n]Figure11.2311.5.2ChirpFourierTransform(CFT)502.StepstorealizeCFT:Accordingtoω0and(Δω),toobtainthesequence:(2)Toobtaintheoutputofthefilterwithimpulseresponse(3)ToobtaintheoutputofsystemFig.(11.23)bymultiplication
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年在線銷售合作合同書范本
- 長期金融咨詢服務合同模板
- 店面接盤協(xié)議書格式
- 長期供貨協(xié)議樣本
- 工業(yè)產品購銷合同模板
- 勞動關系解除協(xié)議
- 個人參與創(chuàng)業(yè)團隊入股協(xié)議
- 建筑工程清包工作合同參考
- 2023年高考地理第三次模擬考試卷(江蘇B卷)(解析版)
- 貨物分期付款購買協(xié)議樣本
- 《靈敏素質練習》教案
- 型鋼軋制操作學習培訓導衛(wèi)安裝與調整操作課件
- 紅色國潮風謝師宴活動策劃PPT模板課件
- 統(tǒng)編版四年級上冊語文課件 - 第五單元 習作例文 (PPT28頁)
- T∕CSPSTC 69-2021 磷石膏預處理技術規(guī)范
- T∕CAWA 002-2021 中國疼痛科專業(yè)團體標準
- 農產品電子商務平臺建設項目可行性研究報告
- 酸堿平衡紊亂ppt課件
- 屋頂分布式光伏項目施工組織設計
- 新高考語言文字運用專題練習
- 施工總承包單位對分包單位的管理制度
評論
0/150
提交評論