2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析_第1頁
2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析_第2頁
2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析_第3頁
2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析_第4頁
2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022學(xué)年湖南省懷化市丑溪口鄉(xiāng)中學(xué)高三數(shù)學(xué)理月考試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 已知函數(shù)f(x)=Asin(x+)(A0,0,|)的部分圖象如圖所示則函數(shù)f(x)的解析式為( )Af(x)=2sin(2x)Bf(x)=2sin(2x+)Cf(x)=2sin(x+)Df(x)=2sin(x)參考答案:B考點:由y=Asin(x+)的部分圖象確定其解析式 專題:三角函數(shù)的求值;三角函數(shù)的圖像與性質(zhì)分析:由題意求出A,T,利用周期公式求出,利用當x=時取得最大值2,求出,得到函數(shù)的解析式,即可得解解答

2、:解:由題意可知A=2,T=4()=,=2,當x=時取得最大值2,2=2sin(2+),2+=2k,kZ,|,可解得:=,故函數(shù)f(x)的解析式為:f(x)=2sin(2x+)故選:B點評:本題主要考查由y=Asin(x+)的部分圖象確定其解析式,注意函數(shù)的周期的求法,考查計算能力,常考題型,屬于基礎(chǔ)題2. 為虛數(shù)單位,在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點位于 ( )第一象限 第二象限第三象限 第四象限參考答案:B略3. 已知正四棱錐的正弦值等于(A) (B) (C) (D)參考答案:A4. 設(shè)命題p:函數(shù)ysin2x的最小正周期為;命題q:函數(shù)ycosx的圖象關(guān)于直線x對稱,則下列的判斷正確的是()A、

3、p為真B、q為假C、q為假D、為真參考答案:C5. 平移直線xy10使其與圓1相切,則平移的最短距離為 (A)1 (B)2 (C) (D)1參考答案:A略6. 等比數(shù)列中,已知對任意正整數(shù),則等于()ABCD參考答案:A略7. 若函數(shù)在(0,+)上存在零點,則實數(shù)a的取值范圍是( )A. B. C. D. 參考答案:B【分析】本題首先可以將“函數(shù)在上存在零點”轉(zhuǎn)化為“函數(shù)與函數(shù)在上有交點”,然后畫出函數(shù)圖像,根據(jù)函數(shù)圖像即可得出結(jié)果?!驹斀狻亢瘮?shù)在上存在零點,即在上有解,令函數(shù),在上有解即函數(shù)與函數(shù)在上有交點,函數(shù)的圖像就是函數(shù)的圖像向左平移個單位,如圖所示,函數(shù)向左平移時,當函數(shù)圖像過點之后

4、,與函數(shù)沒有交點,此時,故的取值范圍為,故選B?!军c睛】本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的相關(guān)性質(zhì),考查對數(shù)函數(shù)與指數(shù)函數(shù)圖像的畫法,考查函數(shù)圖像平移的相關(guān)性質(zhì),考查數(shù)形結(jié)合思想,考查推理能力,體現(xiàn)了綜合性,是難題。8. 設(shè),不等式的解集是,則等于( )A B C D參考答案:B9. 已知,則“”是“”的( ) A充分不必要條件 B必要不充分條件 C充要條件 D既不充分也不必要條件參考答案:A10. 在三角形中,角所對的邊為.若,則=( )A. B. C. D.參考答案:B試題分析:由,平方可求sin2B,進而可求B,然后利用正弦定理 可求sinA,進而可求A;所以在ABC中,由正弦定理得.考點:

5、正弦定理,二倍角公式二、 填空題:本大題共7小題,每小題4分,共28分11. 直線的斜率為_。參考答案: 解析: 12. 如圖,正六邊形的邊長為,則 參考答案:略13. 對于函數(shù)f(x)=texx,若存在實數(shù)a,b(ab),使得f(x)0的解集為a,b,則實數(shù)t的取值范圍是 參考答案:(0,)考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 專題:導(dǎo)數(shù)的綜合應(yīng)用分析:轉(zhuǎn)化texx,為t的不等式,求出表達式的最大值,以及單調(diào)區(qū)間,即可得到t的取值范圍解答:解:texx(e是自然對數(shù)的底數(shù)),轉(zhuǎn)化為t,令y=,則y=,令y=0,可得x=1,當x1時,y0,函數(shù)y遞減;當x1時,y0,函數(shù)y遞增則當x=1時函數(shù)y取得

6、最大值,由于存在實數(shù)a、b,使得f(x)0的解集為a,b,則由右邊函數(shù)y=的圖象可得t的取值范圍為(0,)故答案為(0,)點評:本題考查函數(shù)的導(dǎo)數(shù)的最值的應(yīng)用,考查轉(zhuǎn)化思想與計算能力屬于中檔題14. 已知是上的奇函數(shù),且對任意都有成立,則 ; .參考答案:無略15. 高三畢業(yè)時,甲,乙,丙等五位同學(xué)站成一排合影留念,已知甲,乙相鄰,則甲丙相鄰的概率為 參考答案:16. 若,是一二次方程的兩根,則 .參考答案:-3.17. 甲、乙、丙等五人站成一排,要求甲、乙均不與丙相鄰,則不同的排法種數(shù)為參考答案:36三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 設(shè)函數(shù)

7、,.(1)若是的極值點,求實數(shù)的值;(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍參考答案:解:(1)F(x)= ex+sinxax,.因為x=0是F(x)的極值點,所以.又當a=2時,若x0, .x=0是F(x)的極小值點, a=2符合題意. (2)令則.因為當x0時恒成立, 所以函數(shù)S(x)在上單調(diào)遞增, S(x)S(0)=0當x時恒成立; 因此函數(shù)在上單調(diào)遞增, 當x時恒成立.當a2時,在單調(diào)遞增,即.故a2時F(x)F(x)恒成立. 19. 已知函數(shù)f(x)=cos(2x)cos2x()求f()的值;()求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間參考答案:【考點】三角函數(shù)的周期性

8、及其求法;余弦函數(shù)的單調(diào)性【分析】()根據(jù)函數(shù)f(x)的解析式,計算f()的值即可;()化函數(shù)f(x)為正弦型函數(shù),即可求出它的最小正周期與單調(diào)遞增區(qū)間【解答】解:()函數(shù)f(x)=cos(2x)cos2x,f()=cos()cos=()=1;()函數(shù)f(x)=cos(2x)cos2x=cos2xcos+sin2xsincos2x=sin2xcos2x=sin(2x);函數(shù)f(x)的最小正周期為T=;由y=sinx的單調(diào)遞增區(qū)間是2k,2k+,(kZ);令2k2x2k+,kZ,解得kxk+;函數(shù)f(x)的單調(diào)遞增區(qū)間為k,k+,(kZ)20. 已知首項為1的數(shù)列an滿足:當時,.(1)求數(shù)列a

9、n的通項公式; (2)求數(shù)列的前n項和Tn.參考答案:(1);(2).【分析】(1)利用累加法可求得數(shù)列的通項公式;(2)利用等比數(shù)列前項和公式,可求得.【詳解】(1),整理得:,當時,也符合上式,.(2),數(shù)列是首項為,公比為的等比數(shù)列,.【點睛】本題考查累加法求數(shù)列的通項公式、等比數(shù)列前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.21. 已知函數(shù),(1)若函數(shù)存在零點,求實數(shù)a的取值范圍;(2)求證:若,則.參考答案:(1),令,得;故在上單調(diào)遞減,在上單調(diào)遞增;2分因為且存在零點,故,得。5分(2)法一:當,因為,要證,即證6分令,則。令,解得,故在上單調(diào)遞增,在上單調(diào)遞減,8分令,則。令,解得,故在上單調(diào)遞增,在上單調(diào)遞減,。10分又因為,所以,即,所以,即。12分法二:令,則,令,則,所以在單調(diào)遞減,即在單調(diào)遞減,又,所以,使得,且當時,當時,所以在上單調(diào)遞增,在上單調(diào)遞減;所以,又,所以,故,令,則,所以在單調(diào)遞增,所以,故,即,所以若,則。法三:要證,即證,其中令,即證,令,則,在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論