




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、WirelessNetworkExperimentThree:QueuingTheoryABSTRACTThisexperimentisdesignedtolearnthefundamentalsofthequeuingtheory.MainlyabouttheM/M/SandM/M/n/nqueuingmodels.KEYWORDS:queuingtheory,M/M/s,M/M/n/n,ErlangB,ErlangC.INTRODUCTIONAqueueisawaitinglineandqueueingtheoryisthemathematicaltheoryofwaitinglines.
2、Moregenerally,queueingtheoryisconcernedwiththemathematicalmodelingandanalysisofsystemsthatprovideservicetorandomdemands.Incommunicationnetworks,queuesareencounteredeverywhere.Forexample,theincomingdatapacketsarerandomlyarrivedandbuffered,waitingfortheroutertodeliver.Suchsituationisconsideredasaqueue
3、.Aqueueingmodelisanabstractdescriptionofsuchasystem.Typically,aqueueingmodelrepresents(1)thesystemsphysicalconfiguration,byspecifyingthenumberandarrangementoftheservers,and(2)thestochasticnatureofthedemands,byspecifyingthevariabilityinthearrivalprocessandintheserviceprocess.Theessenceofqueueingtheor
4、yisthatittakesintoaccounttherandomnessofthearrivalprocessandtherandomnessoftheserviceprocess.ThemostcommonassumptionaboutthearrivalprocessisthatthecustomerarrivalsfollowaPoissonprocess,wherethetimesbetweenarrivalsareexponentiallydistributed.Theprobabilityoftheexponentialdistributionfunctionisf(t)=入e
5、入t.ErlangBmodelOneofthemostimportantqueueingmodelsistheErlangBmodel(i.e.,M/M/n/n).ItassumesthatthearrivalsfollowaPoissonprocessandhaveafinitenservers.InErlangBmodel,itassumesthatthearrivalcustomersareblockedandclearedwhenalltheserversarebusy.TheblockedprobabilityofaErlangBmodelisgivenbythefamousErla
6、ngBformula,(I)PE(n3=,蛙、2k=i)kTwherenisthenumberofserversandA=A/istheofferedloadinErlangs,入isthearrivalrateand1/p.istheaverageservicetime.Formula(1.1)ishardtocalculatedirectlyfromitsrightsidewhennandAarelarge.However,itiseasytocalculateitusingthefollowingiterativescheme:ErlangCmodelTheErlangdelaymode
7、l(M/M/n)issimilartoErlangBmodel,exceptthatnowitassumesthatthearrivalcustomersarewaitinginaqueueforaservertobecomeavailablewithoutconsideringthelengthofthequeue.Theprobabilityofblocking(alltheserversarebusy)isgivenbytheErlangCformula,Wherep=1ifAnandp=AifAn.Thequantitypindicatestheserverutilization.nT
8、heErlangCformula(1.3)canbeeasilycalculatedbythefollowingiterativeschemewhereP(n,A)isdefinedinEq.(1.1).BDESCRIPTIONOFTHEEXPERIMENTSUsingtheformula(1.2),calculatetheblockingprobabilityoftheErlangBmodel.DrawtherelationshipoftheblockingprobabilityPB(n,A)andofferedtrafficAwithn=1,2,10,20,30,40,50,60,70,8
9、0,90,100.Compareitwiththetableinthetextbook(P.281,table10.3).Fromtheintroduction,weknowthatwhenthenandAarelarge,itiseasytocalculatetheblockingprobabilityusingtheformula1.2asfollows.P(n,A)=APB(n_Bm+APB(n-1,A)itusethetheoryofrecursionforthecalculation.Butthedenominatorandthenumeratoroftheformulabothne
10、edtorecurs(PB(n-1,A)whendoingthematlabcalculation,itwastetimeandreducethematlabcalculationefficient.Sowechangetheformulatobe:PB(n,A)=APPB(n,A)=APB(n1,A)nAPb(n1,A)1=1/(12nAPB(n_1AAPB(nAPB(n-1,A)1,A)Thenthecalculationonlyneedrecursoncetimeandismoreefficient.Thematlabcodefortheformulais:erlang_b.m%*%Fi
11、le:erlanb_b.m%A=offeredtrafficinErlangs.%n=numberoftrunckedchannels.%Pbistheresultblockingprobability.%*functionPb=erlang_b(A,n)ifn=0Pb=1;%P(0,A)=1elsePb=1/(1+n/(A*erlang_b(A,n-1);%userecursionerlang(A,n-1)endendAswecanseefromthetableonthetextbooks,itusesthelogarithmcoordinate,sowealsousethelogarith
12、mcoordinatetoplottheresult.Wedividethenumberofservers(n)intothreeparts,foreachpartwecandefineaintervalofthetrafficintensity(A)basedonthefigureonthetextbooks:1.when0n10,0.1A10.when10n20,3A20.when30n100,13A*rofTrunkdClia-Hntla(C13I4?tAnM-MiLBSM10.0血0.01-TrafficlEueniiEyisBrito*Nwal*rofTrunkdClia-Hntla
13、(C13I4?tAnM-MiLBSM10.0血0.01-TrafficlEueniiEyisBrito*Wecanseefromthetwopicturesthat,theyareexactlythesamewitheachotherexceptthattheresultoftheexperimenthavenotconsideredthesituationwithn=3,4,5,.,12,14,16,18.2.Usingtheformula(1.4),calculatetheblockingprobabilityoftheErlangCmodel.Drawtherelationshipoft
14、heblockingprobabilityPC(n,A)andofferedtrafficAwithn=1,2,10,20,30,40,50,60,70,80,90,100.Fromtheintroduction,weknowthattheformula1.4is:PCPC(n,A)=nPB(n,A)n-A(1-PB(n,A)SinceeachtimewecalculatetheP(n,A),weneedtorecursntimes,sotheformulaisnotBefficient.Wechangeittobe:PC(n,A)=nPB(n,A)n-A(1-pB(n,A)=1/n_A(1_
15、PB(n,A)PC(n,A)=nPB(n,A)n-A(1-pB(n,A)Thenweonlyneedrecursonce.PB(n,A)iscalculatedbythe“erlang_b”functionasstep1.Thematlabcodefortheformulais:erlang_c.m%*%File:erlanb_b.m%A=offeredtrafficinErlangs.%n=numberoftrunckedchannels.%Pbistheresultblockingprobability.%erlang_b(A,n)isthefunctionofstep1.%*functi
16、onPc=erlang_c(A,n)Pc=1/(A/n)+(n-A)/(n*erlang_b(A,n);endThentofigureoutthetableinthelogarithmcoordinateaswhatshowninthestep1.Thematlabcodeis:%*%forthethreeparts.%nisthenumberservers.%Aisthetrafficindensity.%P_cistheblockingprobabilityoferlangCmodel.%*n_1=1:2;A_1=linspace(0.1,10,50);%50pointsbetween0.
17、1and10.n_2=10:10:20;A_2=linspace(3,20,50);n_3=30:10:100;A_3=linspace(13,120,50);%*%foreachpart,calltheerlang_c()function.%*fori=1:length(n_1)forj=1:length(A_1)p_1_c(j,i)=erlang_c(A_1(j),n_1(i);%pOA_Eyerlang_cendendfori=1:length(n_2)forj=1:length(A_2)p_2_c(j,i)=erlang_c(A_2(j),n_2(i);endendfori=1:len
18、gth(n_3)forj=1:length(A_3)p_3_c(j,i)=erlang_c(A_3(j),n_3(i);endend%*%useloglogtofiguretheresultwithinlogarithmcoordinate.%*loglog(A_1,p_1_c,g*-,A_2,p_2_c,g*-,A_3,p_3_c,g*-);xlabel(TrafficindensityinErlangs(A)ylabel(ProbabilityofBlocking(P)axis(0.11200.0010.1)text(.115,.115,n=1)text(.6,.115,n=2)text(
19、6,.115,10)text(14,.115,20)text(20,.115,30)text(30,.115,40)text(39,.115,50)text(47,.115,60)text(55,.115,70)text(65,.115,80)text(75,.115,90)text(85,.115,100)TheresultofblockingprobabilitytableoferlangCmodel.EBu住星口右xi-KFqaEBu住星口右xi-KFqa在ThenweputthetableoferlangBanderlangCintheonefigure,tocomparetheirc
20、haracteristic.E盂口in苫JTE盂口in苫JTiH-gqEd1D1io1Tr-sffic-ndensrlyinErbrig!爐iIfl3Thematlabcodeis:Thematlabcodeis:mms_function.mid1id1a1icrTraficindensfcyinErl-angsThelinewith*istheerlangCmodel,thelinewithout*istheerlangBmodel.Wecanseefromthepicturethat,foraconstanttrafficintensity(A),theerlangCmodelhasahi
21、gherblockingprobabilitythanerlangBmodel.Theblockingprobabilityisincreasingwithtrafficintensity.Thesystemperformsbetterwhenhasalargern.ADDITIONALBONUSWriteaprogramtosimulateaM/M/kqueuesystemwithinputparametersoflamda,mu,k.Inthispart,wewillfirstlysimulatetheM/M/kqueuesystemusematlabtogetthefigureofthe
22、performanceofthesystemsuchastheleavetimeofeachcustomerandthequeuelengthofthesystem.Aboutthesimulation,wefirstlycalculatethearrivetimeandtheleavetimeforeachcustomer.Thenanalysisoutthequeuelengthandthewaittimeforeachcustomeruse“for”loops.Thenwelettheinputtobelamda=3,mu=1andS=3,andanalysisperformanceof
23、thesystemforthefirst10customersindetail.Finally,wewilldotwotesttocomparedtheperformanceofthesystemwithinputlamda=1,mu=1andS=3andtheinputlamda=4,mu=1andS=3.functionblock_rate,use_rate=MMS_function(mean_arr,mean_serv,peo_num,server_num)%firstpart:computethearrivingtimeinterval,servicetime%interval,wai
24、tingtime,leavingtimeduringthewholeserviceinterval%state=zeros(5,peo_num);%representthestateofeachcustomerby%usinga5*peo_nummatrix%themeaningofeachlineis:arrivingtimeinterval,servicetime%interval,waitingtime,queuelengthwhenNO.ncustomer%arrive,leavingtimestate(1,:)=exprnd(1/mean_arr,1,peo_num);%arrivi
25、ngtimeintervalbetweeneach%customerfollowsexponetialdistributionstate(2,:)=exprnd(1/mean_serv,1,peo_num);%servicetimeofeachcustomerfollowsexponetialdistributionfori=1:server_numstate(3,1:server_num)=0;endarr_time=cumsum(state(1,:);%accumulatearrivingtimeintervaltocompute%arrivingtimeofeachcustomersta
26、te(1,:)=arr_time;state(5,1:server_num)=sum(state(:,1:server_num);%computelivingtimeoffirstNO.server_num%customerbyusingfomulararrivingtime+servicetimeserv_desk=state(5,1:server_num);%createavectortostoreleavingtimeofcustomerswhichisinservicefori=(server_num+1):peo_numifarr_time(i)min(serv_desk)state
27、(3,i)=0;elsestate(3,i)=min(serv_desk)-arr_time(i);%whencustomerNO.iarrivesandthe%serverisallbusy,thewaitingtimecanbecomputeby%minusarrivingtimefromtheminimumleavingtimeendstate(5,i)=sum(state(:,i);forj=1:server_numifserv_desk(j)=min(serv_desk)serv_desk(j)=state(5,i);breakend%replacetheminimumleaving
28、timebythefirstwaitingcustomersleavingtimeendend%secondpart:computethequeuelengthduringthewholeserviceinterval%zero_time=0;%zero_timeisusedtoidentifywhichserverisemptyserv_desk(1:server_num)=zero_time;block_num=0;block_line=0;fori=1:peo_numifblock_line=0find_max=0;forj=1:server_numifserv_desk(j)=zero
29、_timefind_max=1;%meansthereisemptyserverbreakelsecontinueendendiffind_max=1%updateserv_deskserv_desk(j)=state(5,i);fork=1:server_numifserv_desk(k)min(serv_desk)%ifacustomerwillleavebeforetheNO.i%customerarrivefork=1:server_numifarr_time(i)serv_desk(k)serv_desk(k)=state(5,i);breakelsecontinueendendfo
30、rk=1:server_numifarr_time(i)serv_desk(k)serv_desk(k)=zero_time;elsecontinueendendelse%ifnocustomerleavebeforetheNO.icustomerarriveblock_num=block_num+1;block_line=block_line+1;endendelse%thesituationthatthequeuelengthisnotzeron=0;%computethenumberofleaingcustomerbeforetheNO.icustomerarrivesfork=1:se
31、rver_numifarr_time(i)serv_desk(k)n=n+1;serv_desk(k)=zero_time;elsecontinueendendfork=1:block_lineifarr_time(i)state(5,i-k)n=n+1;elsecontinueendendifnblock_line+1%narr_time(i)form=1:server_numifserv_desk(m)=zero_timeserv_desk(m)=state(5,i-block_line+k)breakelsecontinueendendelsecontinueendendblock_li
32、ne=block_line-n+1;else%n=block_line+1meansthequeuelengthiszero%updateserv_deskandqueuelengthfork=0:block_lineifarr_time(i)state(5,i-k)form=1:server_numifserv_desk(m)=zero_timeserv_desk(m)=state(5,i-k)breakelsecontinueendendelsecontinueendendblock_line=0;endendstate(4,i)=block_line;endplot(state(1,:)
33、,*-);figureplot(state(2,:),g);figureplot(state(3,:),r*);figureplot(state(4,:),y*);figureplot(state(5,:),*-);SincethesystemisM/M/SwhichmeansthearrivingrateandserviceratefollowsPoissondistributionwhilethenumberofserverisSandthebufferlengthisinfinite,wecancomputeallthearrivingtime,servicetime,waitingti
34、meandleavingtimeofeachcustomer.Wecantestthecodewithinputlamda=3,mu=1andS=3.Figuresarebelow.Arrivingtimeofeachcustomercu-stamarnurnbar3DSD1D0ServicetimeofeachcustomerWaitingtimeofeachcustomer108?oQueuelengthwheneachcustomerarriveAslamda=mu*server_num,theloadofthesystemcouldbeveryhigh.Thenwewillzoomin
35、theresultpicturestoanalysistheperformanceofthesystemforthefirstly10customer.Arrivingtimeoffirst10customer1a=1.6-Thequeuelengthis1forthe7thcustomer.11a=1.6-Thequeuelengthis1forthe7thcustomer.1.衛(wèi)-12345673910customBrrtuniberQueuelengthoffirst10customermELe.e=-bh_-u1234567mELe.e=-bh_-u1234567B510cuetoiT
36、i&rhurriberLeavingtimeoffirst10customerAswehave3serverinthistest,thefirst3customerwillbeservedwithoutanydelay.Thearrivingtimeofcustomer4isabout1.4andtheminimumleavingtimeofcustomerinserviceisabout1.2.Socustomer4willbeservedimmediatelyandthequeuelengthisstill0.Customer1,4,3isinservice.Thearrivingtime
37、ofcustomer5isabout1.8andtheminimumleavingtimeofcustomerinserviceisabout1.6.Socustomer5willbeservedimmediatelyandthequeuelengthisstill0.Customer1,5isinservice.Thearrivingtimeofcustomer6isabout2.1andthereisaemptyserver.Socustomer6willbeservedimmediatelyandthequeuelengthisstill0.Customer1,5,6isinservic
38、e.Thearrivingtimeofcustomer7isabout2.2andtheminimumleavingtimeofcustomerinserviceisabout2.5.Socustomer7cannotbeservedimmediatelyandthequeuelengthwillbe1.Customer1,5,6isinserviceandcustomer7iswaiting.Thearrivingtimeofcustomer8isabout2.4andtheminimumleavingtimeofcustomerinserviceisabout2.5.Socustomer8cannotbeservedimmediatelyandthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 輕量級圖數(shù)據(jù)庫引擎NeuroDB應用
- 2025年度文化演出合同解除終止范本
- 體育場館用地轉(zhuǎn)讓居間
- 2025年度戶外廣告牌鋼結(jié)構(gòu)彩鋼棚定制與安裝服務合同
- 2025年度婚禮用品租賃合同到期時間及續(xù)租優(yōu)惠
- 2025年度婚前協(xié)議:基于父母首付的購房合同及婚后財產(chǎn)分割協(xié)議
- 2025年度合伙企業(yè)合伙份額轉(zhuǎn)讓與大數(shù)據(jù)分析服務協(xié)議
- 2025年度勞動合同必須包含的員工離職與接續(xù)就業(yè)協(xié)議
- 2025年度工傷私了賠償協(xié)議標準文本及解析
- 社會辦醫(yī)院章程范本
- 《共圓中國夢》示范課教學設計【部編人教版九年級道德與法治上冊】
- 《更年期中醫(yī)調(diào)》課件
- 頸部膿腫護理查房課件
- 公立醫(yī)院績效考核微創(chuàng)手術(shù)目錄(第2版)
- 九年級中考物理-安培定則(右手螺旋定則)復習題匯總及解析
- 物流營銷(第四版) 課件 胡延華 第1、2章 物流營銷概述、物流營銷市場調(diào)查與分析
- 華東師大版九年級數(shù)學下冊全冊課時練習(一課一練)
- “課程思政”融入專業(yè)課教學的探索課程思政與專業(yè)課結(jié)合
- 工程結(jié)算審核服務方案技術(shù)標
- 《中西醫(yī)結(jié)合:心血管疾病的中西醫(yī)防治》
- 鬼谷神掌 (靜月山人整理)
評論
0/150
提交評論