




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、人工智能技術(shù)在認(rèn)知無線電中的應(yīng)用趙冠州【摘要】無線電是指在所有空間傳播的電磁波,是一個上限頻率在300 GHz,下限 頻率不固定的有限頻帶.無線電自發(fā)展以來被廣泛應(yīng)用于通信、電力傳輸?shù)雀鱾€領(lǐng) 域,為人們?nèi)粘I顜砹吮憷?隨著人工智能技術(shù)的普及和發(fā)展,認(rèn)知無線電的概念 逐步進(jìn)入大眾視野.作為無線通信領(lǐng)域和人工智能領(lǐng)域結(jié)合的產(chǎn)物,智能性是認(rèn)知無 線電區(qū)別于傳統(tǒng)無線電的主要特性.因此,重點(diǎn)對人工智能技術(shù)在認(rèn)知無線電中的應(yīng) 用展開探討.期刊名稱】 通信電源技術(shù)年(卷),期】 2018(035)010【總頁數(shù)】3頁(P175-176,178)【關(guān)鍵詞】 人工智能;認(rèn)知無線電;無線通信【作 者】 趙冠州
2、【作者單位】 大理大學(xué),云南大理 671000【正文語種】 中 文0引言無線電技術(shù)自發(fā)展以來被廣泛應(yīng)用于各個領(lǐng)域,如人們?nèi)粘I蠲芮邢嚓P(guān)的調(diào)頻廣播、蜂窩電話和數(shù)字電視等,都是利用電磁波原理進(jìn)行的數(shù)據(jù)傳播。隨著人們對無線通信的需求不斷增長,原有的無線頻譜已經(jīng)不能滿足人們對帶寬的要求。認(rèn)知無 線電的出現(xiàn),能有效解決這一難題。認(rèn)知無線電也被稱為CR技術(shù),是具有尋找無 線空閑頻譜能力的智能無線電技術(shù)。它與傳統(tǒng)無線電技術(shù)的區(qū)別主要在于認(rèn)知能力 和重構(gòu)能力兩點(diǎn)。認(rèn)知能力是指CR技術(shù)可在無線環(huán)境中識別現(xiàn)有的無線頻譜,并 自動感知工作參數(shù);重構(gòu)能力即CR技術(shù)可實(shí)現(xiàn)自動重構(gòu)編程,對無線電的工作頻 率、調(diào)制方式等
3、參數(shù)進(jìn)行再設(shè)置。而認(rèn)知無線電在各個領(lǐng)域的應(yīng)用則主要依靠于人 工智能技術(shù)的支撐。人工智能是計(jì)算機(jī)學(xué)科的一個分支,涉及到語言識別、圖像識 別和聲音識別等諸多內(nèi)容。人工智能技術(shù)的蓬勃發(fā)展勢必會使認(rèn)知無線電智能化成 為現(xiàn)實(shí)。1 認(rèn)知無線電中常用的人工智能技術(shù) 認(rèn)知無線電智能化主要體現(xiàn)在其推理、學(xué)習(xí)和優(yōu)化能力上。推理能力是對現(xiàn)有知識 庫中所含內(nèi)容進(jìn)行功能分區(qū),并合理預(yù)測決策的過程。學(xué)習(xí)能力是指概括原有知識 內(nèi)容,融入到知識庫中。優(yōu)化能力是對現(xiàn)有工作參數(shù)進(jìn)行自主調(diào)試,以滿足人們的 不同需求1。推理系統(tǒng)CR 技術(shù)中的推理系統(tǒng)主要分為基于規(guī)則和基于案例的推理。其中,基于規(guī)則的推 理系統(tǒng)是指來自各個行業(yè)領(lǐng)域的專
4、業(yè)人士將學(xué)科前沿知識以編程方式存入知識庫中, 利用CR技術(shù)對編程規(guī)則進(jìn)行解讀,隨后完成指令操作。基于規(guī)則的推理系統(tǒng)結(jié)構(gòu) 簡單、操作容易,但穩(wěn)定性不高。CR技術(shù)的實(shí)踐過程是將前期存入知識庫中的知 識內(nèi)容進(jìn)行解析,然后按照指定操作輸出結(jié)果。這對知識結(jié)構(gòu)和準(zhǔn)確性提出了很高 要求,一旦知識網(wǎng)絡(luò)模糊,推理系統(tǒng)無法正確識別指令,將會輸出錯誤的計(jì)算結(jié)果。 另一種推理系統(tǒng)是基于案例進(jìn)行推理,簡言之是在沒有完備的知識結(jié)構(gòu)體系前提下, 通過對比已經(jīng)掌握解決某類特定問題的方法,將其應(yīng)運(yùn)在相似環(huán)境中。它的特點(diǎn)在 于系統(tǒng)具有類似于人類的思維,可以運(yùn)用已有解題方式解決新問題。在實(shí)際操作過 程中,為了豐富拓展推理系統(tǒng)的使用
5、寬度,人們往往將這兩種推理方式結(jié)合使用。 當(dāng)知識庫中知識儲備能解決問題時,主要運(yùn)用基于規(guī)則的推理方式;如果知識網(wǎng)絡(luò) 存在漏洞無法利用現(xiàn)有知識有效解決問題時,則綜合使用基于案例推理方式,通過 案例學(xué)習(xí)做出推理決策。機(jī)器學(xué)習(xí)方法 機(jī)器學(xué)習(xí)是指通過編程使計(jì)算機(jī)系統(tǒng)模擬人類思維,學(xué)習(xí)新興知識的過程。目前, 被廣泛應(yīng)用的機(jī)器學(xué)習(xí)方法主要有人工神經(jīng)網(wǎng)絡(luò)和貝葉斯學(xué)習(xí)等。人工神經(jīng)網(wǎng)絡(luò)是 近年來學(xué)術(shù)界用來輔助完成科研過程的熱門算法,基本原理是類比人類大腦中神經(jīng) 元對信息的處理方式,通過不斷調(diào)整各數(shù)據(jù)節(jié)點(diǎn)之間的關(guān)系來完成信息處理。人工 神經(jīng)網(wǎng)路的優(yōu)勢在于通過判定預(yù)選輸入系統(tǒng)內(nèi)的起始和輸出數(shù)據(jù)間的邏輯關(guān)系,將 輸入
6、的新數(shù)據(jù)按照計(jì)算法則處理即可得出輸出結(jié)果。將現(xiàn)實(shí)案例抽象為數(shù)學(xué)模型, 往往是科研過程中最難進(jìn)行的部分。人工神經(jīng)網(wǎng)絡(luò)的出現(xiàn),有效解決了這一難題。 傳統(tǒng)算法只適用于線性數(shù)學(xué)模型的求解優(yōu)化,無法應(yīng)對復(fù)雜的數(shù)學(xué)建模過程。人工 神經(jīng)網(wǎng)絡(luò)只需要案例原始數(shù)據(jù),就可完成模型求解。此外,人工神經(jīng)網(wǎng)絡(luò)的自適應(yīng) 性可被應(yīng)用于認(rèn)知無線電中的頻譜識別感應(yīng)、信號感知和工作參數(shù)調(diào)試等問題。貝 葉斯學(xué)習(xí)主要針對數(shù)據(jù)信息的先驗(yàn)概率進(jìn)行推理決策,在通信領(lǐng)域主要應(yīng)用于問題 的抽取、儲存等2。智能優(yōu)化算法 認(rèn)知無線電區(qū)別于傳統(tǒng)無線電技術(shù)的主要特點(diǎn)是能按照環(huán)境和客戶需求實(shí)現(xiàn)工作參 數(shù)的智能調(diào)試。工作參數(shù)設(shè)置包括頻譜、客戶需求和客觀環(huán)境
7、等多方面限制,需要 以函數(shù)形式進(jìn)行多目標(biāo)求解。遺傳、模擬退火和禁忌搜索算法都是認(rèn)知無線電領(lǐng)域 用來智能優(yōu)化的基礎(chǔ)算法。遺傳算法模擬生物學(xué)中自然進(jìn)化的原理,通過自然選擇 淘汰劣勢解尋求問題最優(yōu)答案。將認(rèn)知無線電類比成生物體內(nèi)的染色體,染色體中 存在的各個基于對應(yīng)程序的不同參數(shù),經(jīng)過不斷進(jìn)化達(dá)到最終參數(shù)設(shè)置要求。模擬 退火方法是模擬物理降溫過程,利用數(shù)學(xué)公式計(jì)算不同狀態(tài)的轉(zhuǎn)移概率與臨界值進(jìn) 行搜索。禁忌搜索通過設(shè)置禁忌表,防止搜索內(nèi)容反復(fù)進(jìn)入搜素序列,浪費(fèi)搜索時 間。2 人工智能技術(shù)的 CR 應(yīng)用實(shí)例2.1 在無線區(qū)域網(wǎng)中的應(yīng)用無線區(qū)域網(wǎng)是以認(rèn)知無線電技術(shù)為基礎(chǔ),實(shí)現(xiàn)固定頻段的無線電數(shù)據(jù)傳輸。無線
8、區(qū) 域網(wǎng)與寬帶撥號上網(wǎng)的區(qū)別在于其使用的是全新的頻譜帶,主要應(yīng)用于農(nóng)村等偏遠(yuǎn) 地區(qū)。人工智能技術(shù)在無線區(qū)域網(wǎng)中的應(yīng)用主要體現(xiàn)在認(rèn)知引擎的升級換代上。以 Newman 等人研制出的基于 CBR 認(rèn)知引擎為例,作用機(jī)理為感知模塊、無線環(huán)境 圖與主控模塊的互相關(guān)聯(lián)。其中,無線環(huán)境圖是由分布在各個客戶終端的網(wǎng)絡(luò)節(jié)點(diǎn) 與網(wǎng)絡(luò)線路連接而成的抽象數(shù)據(jù)庫,內(nèi)部包含了地理信息、知識體系和服務(wù)信息客 戶需求等。無線環(huán)境圖中的信息通過不斷觀測引擎中感知模塊的節(jié)點(diǎn)狀態(tài)變化將變 化信息由CR傳送至主控模塊。主控模塊由效用、基于案例/規(guī)則的推理、信道建 模和預(yù)測、多目標(biāo)優(yōu)化和頻譜管理幾部分組成。接收到數(shù)據(jù)信息后,主控模塊
9、按順 序完成推理、學(xué)習(xí)和優(yōu)化過程,最終輸出結(jié)果。與人工智能技術(shù)完美結(jié)合后的無線區(qū)域網(wǎng)絡(luò)可實(shí)現(xiàn)為用戶提供不對稱的數(shù)字用戶線 寬帶接入服務(wù)。隨著互聯(lián)網(wǎng)和無線網(wǎng)絡(luò)的發(fā)展與普及,人們?nèi)粘P畔⒌墨@取渠道早 已由平面紙質(zhì)報紙等轉(zhuǎn)化為網(wǎng)絡(luò)自媒體。為了滿足人們的日常生活需求,絕大部分 地區(qū)的寬帶撥號上網(wǎng)業(yè)務(wù)已廣泛普及。但是,包含山區(qū)在內(nèi)的許多人口密度較低的 偏遠(yuǎn)地區(qū),由于線路接入成本較高,一直無法享受寬帶撥號上網(wǎng)業(yè)務(wù)。基于 802.22 的無線區(qū)域網(wǎng)系統(tǒng)雖然在上網(wǎng)速度和網(wǎng)絡(luò)性能上與固定上網(wǎng)差異不大,但 可適應(yīng)農(nóng)村等偏遠(yuǎn)地區(qū)條件,可為類似地區(qū)提供上網(wǎng)業(yè)務(wù)3。2.2 在無線電測試平臺的應(yīng)用 國外許多學(xué)者已經(jīng)研制出
10、了基于人工神經(jīng)網(wǎng)絡(luò)算法的認(rèn)知無線電測試平臺。無線電 測試平臺需實(shí)現(xiàn)的設(shè)計(jì)目標(biāo)是調(diào)試網(wǎng)絡(luò)頻譜帶、設(shè)置帶寬等工作設(shè)備參數(shù),同時實(shí) 現(xiàn)網(wǎng)絡(luò)最大吞吐量和最小運(yùn)輸速率目標(biāo)。結(jié)合人工智能技術(shù)中的遺傳算法,可建立 解決問題的認(rèn)知引擎。認(rèn)知引擎的主要作用機(jī)理為:初始化無線電通過無線系統(tǒng)遺 傳算法模塊收集信道信息并建模信道,信道建模過程完成后,將信道模型傳輸至認(rèn) 知系統(tǒng)檢測器模塊。在認(rèn)知系統(tǒng)檢測器中判定決策無線電是否需要重新配置,并根 據(jù)過去記憶的信道情況與參數(shù)配置對無線電性能的影響,決定哪些參數(shù)應(yīng)該保留, 哪些參數(shù)需要修改。經(jīng)認(rèn)知系統(tǒng)檢測器判定系統(tǒng)需要更新配置時,模擬器會將產(chǎn)生 的適值函數(shù)和初始代的染色體提供
11、給無線系統(tǒng)遺傳算法模塊,最終將適值函數(shù)表達(dá) 為數(shù)學(xué)函數(shù)形式并輸出仿真結(jié)果。但是,如果經(jīng)認(rèn)知系統(tǒng)檢測器檢測系統(tǒng)無需更新 配置時,系統(tǒng)自動生成子代染色體數(shù)據(jù)庫,用來檢驗(yàn)基帶配置性能結(jié)果。該技術(shù)的 優(yōu)點(diǎn)在于系統(tǒng)可對當(dāng)前環(huán)境產(chǎn)生的系統(tǒng)配置結(jié)果不斷進(jìn)行優(yōu)化更新,直至最后輸出 目標(biāo)結(jié)果,達(dá)到檢驗(yàn)?zāi)康?。?WLAN 中的應(yīng)用WLAN 即人們常說的無線局域網(wǎng)。在無線局域網(wǎng)發(fā)明前,人們上網(wǎng)只能通過有線 寬帶形式,將物理線纜連接成一個電子運(yùn)行通路,費(fèi)事且成本較高。無線局域網(wǎng)應(yīng) 用到人們?nèi)粘I詈?,可直接利用射頻技術(shù)使用電磁波傳輸數(shù)據(jù),在空中進(jìn)行通信 連接?;贗EE802.11標(biāo)準(zhǔn)的無線局域網(wǎng)可實(shí)現(xiàn)特定頻段的無線
12、電波連接。以家 庭用網(wǎng)為例,家庭 WLAN 上網(wǎng)主要包含路由器、交換機(jī)、防火墻和無線接入點(diǎn)等 幾部分,可通過以上設(shè)施設(shè)備實(shí)現(xiàn)數(shù)臺電子設(shè)備的以太網(wǎng)訪問需求。將人工智能技 術(shù)應(yīng)用在 WLAN 網(wǎng)絡(luò)后,具有認(rèn)知功能的無線局域網(wǎng)可通過數(shù)據(jù)接入點(diǎn)的不同進(jìn) 行頻譜掃描,將對系統(tǒng)產(chǎn)生干擾的其他頻譜帶區(qū)分出來,并結(jié)合系統(tǒng)原有的通信信 道模型建立適應(yīng)用戶需求的通信信道模型。另外,基于人工智能技術(shù)支撐的無線局 域網(wǎng)還可在對數(shù)據(jù)接入點(diǎn)頻譜掃描時核查非法入侵終端,防止網(wǎng)絡(luò)黑客惡意攻擊。在多入多出系統(tǒng)中的應(yīng)用 多入多出系統(tǒng)是指通過加設(shè)輸入端及輸出端上的接收信號天線方式,實(shí)現(xiàn)天線之間的信號傳輸,以達(dá)到改善通信質(zhì)量和用網(wǎng)質(zhì)
13、量的目的。多入多出技術(shù)可高效改善目 前的頻譜帶有限情況,提高現(xiàn)階段頻譜效率。將人工智能技術(shù)引入認(rèn)知無線電系統(tǒng) 后,能大大提高頻譜使用效率。人工智能技術(shù)與認(rèn)知無線電系統(tǒng)的結(jié)合已不僅僅局 限于學(xué)術(shù)范圍,這一創(chuàng)新形式早在2006 就被應(yīng)用于工業(yè)領(lǐng)域。墨爾本一通信公司 已經(jīng)開發(fā)出基于人工智能技術(shù)的商用CR系統(tǒng),并廣泛投入到了生產(chǎn)環(huán)節(jié)4。 3結(jié)論 認(rèn)知無線電是在無線電發(fā)展基礎(chǔ)上衍生出來的時代產(chǎn)物?;谌斯ぶ悄芗夹g(shù)的蓬勃 發(fā)展,認(rèn)知無線電被廣泛應(yīng)用于通信、數(shù)據(jù)交互等多個行業(yè)領(lǐng)域?;诖吮尘?,本 文對人工智能技術(shù)在認(rèn)知無線電領(lǐng)域的應(yīng)用情況展開探討,將認(rèn)知無線電領(lǐng)域中體 現(xiàn)的人工智能歸納為推理、學(xué)習(xí)和優(yōu)化能力。其中,推理能力包含了基于規(guī)則推理 和案例推理兩種方式。機(jī)器學(xué)習(xí)能力部分簡述了人工神經(jīng)網(wǎng)絡(luò)和貝葉斯學(xué)習(xí)方法等, 算法優(yōu)化部分則主要列舉了遺傳、模擬退火和禁忌搜索三種優(yōu)化算法模型。最后, 詳述了人工智能技術(shù)在WRAN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃戶外廣告牌合同
- 市場推廣與渠道分銷協(xié)議書
- AI輔助醫(yī)生診斷系統(tǒng)研發(fā)合作協(xié)議
- 企業(yè)客戶關(guān)系管理系統(tǒng)績效評估協(xié)議
- 養(yǎng)殖業(yè)行業(yè)知識培訓(xùn)課件
- 高考語文答題技巧及方法
- 物流倉儲安全管理規(guī)范
- 企業(yè)危機(jī)公關(guān)處理與媒體應(yīng)對預(yù)案
- 高考英語題型 組合規(guī)范練習(xí)
- 餐飲服務(wù)提供合同細(xì)節(jié)
- 工業(yè)項(xiàng)目投資估算及財(cái)務(wù)評價附表(有計(jì)算公式)
- 北京市2024年中考英語真題【附參考答案】
- 某大學(xué)中醫(yī)學(xué)(專升本)學(xué)士學(xué)位考試復(fù)習(xí)題
- 縣醫(yī)院聘請社會監(jiān)督員實(shí)施方案(經(jīng)典版)
- 江西省數(shù)字產(chǎn)業(yè)集團(tuán)有限公司招聘筆試真題2023
- DL-T+5174-2020燃?xì)?蒸汽聯(lián)合循環(huán)電廠設(shè)計(jì)規(guī)范
- 弟子規(guī)帶拼音全文課件省公共課一等獎全國賽課獲獎?wù)n件
- 2024年揚(yáng)州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測試題庫附答案
- 猜猜我有多愛你-繪本故事
- 人教版pep小學(xué)四年級英語下冊全冊完整
- 人教部編版《道德與法治》六年級下冊第9課《日益重要的國際組織》精美課件
評論
0/150
提交評論