湖北省十堰市東風2021-2022學年高考沖刺數(shù)學模擬試題含解析_第1頁
湖北省十堰市東風2021-2022學年高考沖刺數(shù)學模擬試題含解析_第2頁
湖北省十堰市東風2021-2022學年高考沖刺數(shù)學模擬試題含解析_第3頁
湖北省十堰市東風2021-2022學年高考沖刺數(shù)學模擬試題含解析_第4頁
湖北省十堰市東風2021-2022學年高考沖刺數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關(guān)于軸對稱,則的最小值是( )ABCD2在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為(

2、 )A8B9C10D113若,滿足約束條件,則的最大值是( )ABC13D4周易歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎(chǔ),它反映出中國古代的二進制計數(shù)的思想方法我們用近代術(shù)語解釋為:把陽爻“- ”當作數(shù)字“1”,把陰爻“-”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“ ”表示的十進制數(shù)是( )A18B17C16D155函數(shù)的值域為( )ABCD6一輛郵車從地往地運送郵件,沿途共有地,依次記為,(為地,為地)從地出發(fā)時,裝上

3、發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,各地裝卸完畢后剩余的郵件數(shù)記為則的表達式為( )ABCD7函數(shù)圖象的大致形狀是( )ABCD8已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是( )ABCD9執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為( )A-2B-1CD10年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為ABCD11設(shè),集合,則()ABCD12已知雙曲線C的兩

4、條漸近線的夾角為60,則雙曲線C的方程不可能為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知是等比數(shù)列,且,則_,的最大值為_14在中,若,則的范圍為_.15在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小值為_.16展開式中的系數(shù)為_.(用數(shù)字做答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖所示,三棱柱中,平面,點,分別在線段,

5、上,且,是線段的中點.()求證:平面;()若,求直線與平面所成角的正弦值.18(12分)在中,角,的對邊分別為,已知(1)若,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由19(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,求數(shù)列的前項和.20(12分)在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C()求出直線的參數(shù)方程和曲線C的直角坐標方程;()設(shè)直線與曲線C交于P,Q兩點,求的值21(12分)如圖,

6、在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設(shè)圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.22(10分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,的斜率分別為,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

7、1A【解析】化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關(guān)于軸對稱列方程即可求得,問題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。2D【解析】由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范

8、圍為,區(qū)間長度為2,故使得成立的概率為,又,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.3C【解析】由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即故選:【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學思想以及運算求解能力,屬于基礎(chǔ)題4B【解析】由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉(zhuǎn)化為十進制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“

9、屯”卦符號“”表示二進制數(shù)字010001,轉(zhuǎn)化為十進制數(shù)的計算為120+124=1故選:B【點睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識的應(yīng)用等,意在考查學生的轉(zhuǎn)化能力和計算求解能力.5A【解析】由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.6D【解析】根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D【點睛】本題主要考查數(shù)列

10、遞推公式的應(yīng)用,屬于中檔題7B【解析】判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.8C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得. 當a1時,所以函數(shù)f(x)在單調(diào)遞減, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以 故a1,與a1矛盾,故a1矛盾. 當1ae時,函數(shù)f(x)在0,lna單調(diào)遞增,在(lna,

11、1單調(diào)遞減. 所以 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 所以 即 令, 所以 所以函數(shù)g(a)在(1,e)上單調(diào)遞減, 所以, 所以當1ae時,滿足題意. 當a時,函數(shù)f(x)在(0,1)單調(diào)遞增, 因為對區(qū)間內(nèi)的任意實數(shù),都有, 所以, 故1+1, 所以 故綜上所述,a.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學問題的等價轉(zhuǎn)化,找到了問題的突破口.9B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題

12、意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.10B【解析】甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B11B【解析】先化簡集合A,再求.【詳解】由 得: ,所以 ,因此 ,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.12C【解析】判斷出已知條件中雙曲線的漸近線方程,求得四

13、個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況依題意,雙曲漸近線與軸的夾角為30或60,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。135 【解析】 ,即的最大值為14【解析】借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為: .【點睛】本題考查了三角

14、函數(shù)的化簡,重點考查學生的計算能力,難度一般.1510【解析】先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k =10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.16210【解析】轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點睛】本題考查了二項式系數(shù)的求解

15、,考查了學生概念理解,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()證明見詳解;().【解析】()取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;()以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】()取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.()因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間

16、直角坐標系,如下圖所示:不妨設(shè),則,所以,.所以,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.18見解析【解析】(1)因為,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以(2)若B為直角,則,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*)又,所以,所以,與(*)矛盾,所以不存在滿足為直角19(1);(2)【解析】(1)當時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當時,所以,當時,所

17、以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差, .【點睛】本題考查數(shù)列的通項與求和,注意數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.20()(t為參數(shù)),;()1.【解析】()直接由已知寫出直線l1的參數(shù)方程,設(shè)N(,),M(1,1),(0,10),由題意可得,即4cos,然后化為普通方程;()將l1的參數(shù)方程代入C的直角坐標方程中,得到關(guān)于t的一元二次方程,再

18、由參數(shù)t的幾何意義可得|AP|AQ|的值【詳解】()直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù))設(shè)N(,),M(1,1),(0,10),則,即,即=4cos,曲線C的直角坐標方程為x2-4x+y2=0(x0).()將l1的參數(shù)方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,t1t2=-1,|AP|AQ|=|t1t2|=|-1|=1【點睛】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓(xùn)練了直線參數(shù)方程中參數(shù)t的幾何意義的應(yīng)用,是中檔題21(1);(2);(3) 【解析】(1)依題意,得,由此能求出橢圓C的方程.(2)點與點關(guān)于軸對稱,設(shè),設(shè),由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論