10-3三重積分1修版ppt課件_第1頁
10-3三重積分1修版ppt課件_第2頁
10-3三重積分1修版ppt課件_第3頁
10-3三重積分1修版ppt課件_第4頁
10-3三重積分1修版ppt課件_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2022-6-201第三節(jié) 三重積分1)(Iterated integrals)二二 三重積分的定義三重積分的定義一一 問題的提出問題的提出三三 直角坐標(biāo)下的三重積分計(jì)算直角坐標(biāo)下的三重積分計(jì)算2022-6-202三重積分的定義2022-6-203, 用用平平行行于于坐坐標(biāo)標(biāo)面面的的平平面面分分割割.dxdydzzyxvlkji 則則特特別別地地,在在直直角角坐坐標(biāo)標(biāo)系系中中,2022-6-204三重積分的性質(zhì)三重積分的性質(zhì)性質(zhì)性質(zhì)1 , ,g, ,kfx y zlx y zdv (線性性)(線性性) , , ,kfx y z dvlg x y z dv 2022-6-205性質(zhì)性質(zhì)2 區(qū)域可

2、加性區(qū)域可加性 1212 , , , , ,fx y z dvfx y z dvfx y z dv 若若則則性質(zhì)性質(zhì)3( , , )( , , ),f x y zg x y z若若在在上上,保不等式性質(zhì)保不等式性質(zhì)( , , )( , , )f x y z dvg x y z dv 則則2022-6-206性質(zhì)性質(zhì)4 積分中值定理積分中值定理(, )fx y zV 設(shè)設(shè) 函函 數(shù)數(shù)在在 閉閉 區(qū)區(qū) 域域上上 連連 續(xù)續(xù) , 設(shè)設(shè) 為為的的體體積積,則則在在內(nèi)內(nèi)存存在在一一點(diǎn)點(diǎn)(,) ,使得:使得: , ,( , , ).f x y z dvfV 2022-6-207【方法】將三重積分化為一個(gè)二

3、重積分和一個(gè)定積分具體地,有以下幾種方式:(1利用直角坐標(biāo)計(jì)算三重積分 三重積分的計(jì)算然后利用二重積分的計(jì)算,化為三個(gè)定積分2022-6-208xyzo D1z2z2S1S),(1yxzz ),(2yxzz ),(yx,xoyD 閉閉區(qū)區(qū)域域在在面面上上的的投投影影為為閉閉區(qū)區(qū)域域11:( , ),Szz x y 情形1:(投影法)又稱為Z型區(qū)域且且上上交交點(diǎn)點(diǎn)始始終終在在一一個(gè)個(gè)曲曲面面上上,z 平平行行于于軸軸的的直直線線穿穿過過,與與邊邊界界曲曲面面最最多多交交兩兩點(diǎn)點(diǎn)22:( , ),Szzx y 下下交交點(diǎn)點(diǎn)始始終終在在一一個(gè)個(gè)曲曲面面上上,即積分區(qū)域?yàn)榍斨w2022-6-209,

4、( , , )x yf x y zz先先將將看看作作定定值值,將將只只看看作作的的函函數(shù)數(shù),則則 ),(),(21),(),(yxzyxzdzzyxfyxF( , )F x yD然然后后計(jì)計(jì)算算在在閉閉區(qū)區(qū)間間上上的的二二重重積積分分.),(),(),(),(21 DyxzyxzDddzzyxfdyxF 21( , )( , ) ( , , ).zx yzx yDdxdyf x y z dz 如何將三重積分化為三個(gè)定積分?2022-6-2010 xyzo D1z2z2S1S),(1yxzz ),(2yxzz ab)(1xyy )(2xyy ),(yx12:( )( ),D y xyyxaxb

5、若若得得( , , )f x y z dv .),()()(),(),(2121 baxyxyyxzyxzdzzyxfdydx同理:x 平平行行于于軸軸的的直直穿穿過過,與與邊邊界界曲曲面面 最最多多交交兩兩點(diǎn)點(diǎn)情情形形 y 平平行行于于軸軸的的直直線線穿穿過過,與與邊邊界界曲曲面面最最多多交交兩兩點(diǎn)點(diǎn)情情形形2022-6-2011z =0y = 0 x =00y x :平面:平面 x= 0, y = 0 , z = 0,x+2y+ z =1 所圍成的區(qū)域所圍成的區(qū)域x0z y1121Dxy121.例例1 1 計(jì)算計(jì)算x + 2y + z =1DxyzyxxIddd 解解2022-6-2012

6、 :平面:平面y=0 , z=0,3x+y =6, 3x+2y =12 和和 x+y+z = 6所所 圍成的區(qū)域圍成的區(qū)域0y x624不畫立體圖做三重積分不畫立體圖做三重積分Dxy.例例2 2zyxz , y,xfIddd )( 計(jì)計(jì)算算解解2022-6-2013解解2022-6-2014z情形2截面法)特征:截面可用z的函數(shù)表示2022-6-2015xyzozD解解2022-6-2016解解(一)(一)xozy1112022-6-2017解解(二)(二)xozy1112022-6-2018判斷題判斷題則則上上的的連連續(xù)續(xù)函函數(shù)數(shù)為為面面對(duì)對(duì)稱稱的的有有界界閉閉區(qū)區(qū)域域,中中關(guān)關(guān)于于為為若若,),(3 zyxfxyR ;0),(,),(dvzyxfZzyxf為為奇

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論