版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、柱體體積柱體體積=底面積底面積高高特點特點:平頂:平頂.柱體體積柱體體積=?特點特點:曲頂:曲頂.),(yxfz D曲頂柱體的體積曲頂柱體的體積一、問題的提出播放播放 求曲頂柱體的體積采用求曲頂柱體的體積采用 “分割、求和分割、求和、取極限、取極限”的方法,如下動畫演示的方法,如下動畫演示步驟如下:步驟如下:用若干個小平用若干個小平頂柱體體積之頂柱體體積之和近似表示曲和近似表示曲頂柱體的體積,頂柱體的體積,xzyoD),(yxfz i),(ii先分割曲頂柱體的底,先分割曲頂柱體的底,并取典型小區(qū)域,并取典型小區(qū)域,.),(lim10iiniifV 曲頂柱體的體積曲頂柱體的體積 設設有有一一平平
2、面面薄薄片片,占占有有xoy面面上上的的閉閉區(qū)區(qū)域域D,在在點點),(yx處處的的面面密密度度為為),(yx ,假假定定),(yx 在在D上上連連續(xù)續(xù),平平面面薄薄片片的的質(zhì)質(zhì)量量為為多多少少?求平面薄片的質(zhì)量求平面薄片的質(zhì)量i),(ii將薄片分割成若干小塊,將薄片分割成若干小塊,取典型小塊,將其近似取典型小塊,將其近似看作均勻薄片,看作均勻薄片, 所有小塊質(zhì)量之和所有小塊質(zhì)量之和近似等于薄片總質(zhì)量近似等于薄片總質(zhì)量.),(lim10iiniiM xyo定義定義 設設),(yxf是有界閉區(qū)域是有界閉區(qū)域D上的有界函上的有界函數(shù),將閉區(qū)域數(shù),將閉區(qū)域D任意分成任意分成n個小閉區(qū)域個小閉區(qū)域1 ,
3、,2 ,n ,其中,其中i 表示第表示第i個小閉區(qū)域,個小閉區(qū)域,也表 示它 的 面積 , 在每 個也表 示它 的 面積 , 在每 個i 上 任取 一點上 任取 一點),(ii ,作乘積作乘積 ),(iif i , ), 2 , 1(ni ,并作和并作和 iiniif ),(1,二、二重積分的概念如果當各小閉區(qū)域的直徑中的最大值如果當各小閉區(qū)域的直徑中的最大值 趨近于零趨近于零時,這和式的極限存在,則稱此極限為函數(shù)時,這和式的極限存在,則稱此極限為函數(shù)),(yxf在閉區(qū)域在閉區(qū)域 D D 上的上的二重積分二重積分,記為記為 Ddyxf ),(,即即 Ddyxf ),(iiniif ),(lim
4、10. .(1) 在二重積分的定義中,對閉區(qū)域的劃分是在二重積分的定義中,對閉區(qū)域的劃分是任意的任意的.(2)當當),(yxf在閉區(qū)域上連續(xù)時,定義中和式在閉區(qū)域上連續(xù)時,定義中和式的極限必存在,即二重積分必存在的極限必存在,即二重積分必存在.對二重積分定義的說明:對二重積分定義的說明:二重積分的幾何意義二重積分的幾何意義當被積函數(shù)大于零時,二重積分是柱體的體積當被積函數(shù)大于零時,二重積分是柱體的體積當被積函數(shù)小于零時,二重積分是柱體的體積的當被積函數(shù)小于零時,二重積分是柱體的體積的負值負值 在直角坐標系下用平在直角坐標系下用平行于坐標軸的直線網(wǎng)來劃行于坐標軸的直線網(wǎng)來劃分區(qū)域分區(qū)域D, DD
5、dxdyyxfdyxf),(),(dxdyd 故二重積分可寫為故二重積分可寫為xyo則面積元素為則面積元素為性質(zhì)性質(zhì)當當 為常數(shù)時為常數(shù)時,k.),(),( DDdyxfkdyxkf 性質(zhì)性質(zhì) Ddyxgyxf ),(),(.),(),( DDdyxgdyxf (二重積分與定積分有類似的性質(zhì))(二重積分與定積分有類似的性質(zhì))三、二重積分的性質(zhì)性質(zhì)性質(zhì)對區(qū)域具有可加性對區(qū)域具有可加性.),(),(),(21 DDDdyxfdyxfdyxf 性質(zhì)性質(zhì) 若若 為為D的面積,的面積,.1 DDdd 性質(zhì)性質(zhì) 若在若在D上上),(),(yxgyxf .),(),( DDdyxgdyxf 特殊地特殊地.)
6、,(),( DDdyxfdyxf )(21DDD 則有則有 設設M、m分分別別是是),(yxf在在閉閉區(qū)區(qū)域域 D 上上的的最最大大值值和和最最小小值值, 為為 D 的的面面積積,則則性質(zhì)性質(zhì) 設設函函數(shù)數(shù)),(yxf在在閉閉區(qū)區(qū)域域D上上連連續(xù)續(xù), 為為D的的面面積積,則則在在 D 上上至至少少存存在在一一點點),( 使使得得性質(zhì)性質(zhì)(二重積分中值定理)(二重積分中值定理) DMdyxfm),( ),(),(fdyxfD(二重積分估值不等式)(二重積分估值不等式)例例 1 1 不不作作計計算算,估估計計 deIDyx )(22的的值值, 其其中中D是是橢橢圓圓閉閉區(qū)區(qū)域域: 12222 by
7、ax )0(ab .在在D上上 2220ayx ,12220ayxeee 由由性性質(zhì)質(zhì) 6 知知,222)(aDyxede 解解 deDyx)(22 ab.2aeab 區(qū)區(qū)域域 D的的面面積積 , ab例例 2 2 估估計計 DxyyxdI16222 的的值值,其其中中 D: 20, 10 yx.區(qū)域面積區(qū)域面積2 ,16)(1),(2 yxyxf在在D上上),(yxf的的最最大大值值)0(41 yxM),(yxf的的最最小小值值5143122 m)2, 1( yx 故故4252 I. 5 . 04 . 0 I解解例例 3 3 判斷判斷 122)ln(yxrdxdyyx的符號的符號.當當1 y
8、xr時時, 1)(0222 yxyx故故 0)ln(22 yx;又又當當 1 yx時時, 0)ln(22 yx于是于是0)ln(122 yxrdxdyyx.解解例例 4 4 比較積分比較積分 Ddyx )ln(與與 Ddyx 2)ln(的大小的大小, 其中其中 D 是三角形閉區(qū)域是三角形閉區(qū)域, 三頂點各為三頂點各為(1,0),(1,1), (2,0).解解三三角角形形斜斜邊邊方方程程2 yx在在 D 內(nèi)內(nèi)有有 eyx 21,故故 1)ln( yx,于于是是 2)ln()ln(yxyx ,因因此此 Ddyx )ln( Ddyx 2)ln(.oxy121D二重積分的定義二重積分的定義二重積分的性
9、質(zhì)二重積分的性質(zhì)二重積分的幾何意義二重積分的幾何意義(曲頂柱體的體積)(曲頂柱體的體積)(和式的極限)(和式的極限)四、小結(jié)思考題思考題 將二重積分定義與定積分定義進行比較,將二重積分定義與定積分定義進行比較,找出它們的相同之處與不同之處找出它們的相同之處與不同之處. 定積分與二重積分都表示某個和式的極限定積分與二重積分都表示某個和式的極限值,且此值只與被積函數(shù)及積分區(qū)域有關(guān)不值,且此值只與被積函數(shù)及積分區(qū)域有關(guān)不同的是定積分的積分區(qū)域為區(qū)間,被積函數(shù)為同的是定積分的積分區(qū)域為區(qū)間,被積函數(shù)為定義在區(qū)間上的一元函數(shù),而二重積分的積分定義在區(qū)間上的一元函數(shù),而二重積分的積分區(qū)域為平面區(qū)域,被積函
10、數(shù)為定義在平面區(qū)域區(qū)域為平面區(qū)域,被積函數(shù)為定義在平面區(qū)域上的二元函數(shù)上的二元函數(shù)思考題解答思考題解答一、一、 填空題填空題: :1 1、 當函數(shù)當函數(shù)),(yxf在閉區(qū)域在閉區(qū)域D上上_時時, ,則其在則其在D上的二重積分必定存在上的二重積分必定存在 . .2 2、 二 重 積 分二 重 積 分 Ddyxf ),(的 幾 何 意 義 是的 幾 何 意 義 是_._.3 3、 若若),(yxf在 有 界 閉 區(qū) 域在 有 界 閉 區(qū) 域D上 可 積上 可 積 , , 且且21DDD , ,當當0),( yxf時時, , 則則 1),(Ddyxf _ 2),(Ddyxf ; ; 當當0),( y
11、xf時時, , 則則 1),(Ddyxf _ 2),(Ddyxf . .練練 習習 題題4 4、 Ddyx )sin(22_ , ,其中其中 是圓域是圓域 2224 yx的面積的面積 , , 16. .二、二、 利用二重積分定義證明利用二重積分定義證明: : DDdyxfkdyxkf ),(),(.(.(其中其中k為常數(shù)為常數(shù)) )三、三、 比較下列積分的大小比較下列積分的大小: : 1 1、 DDdyxdyx 322)()(與與, ,其中其中D是由圓是由圓 2)1()2(22 yx所圍成所圍成 . . 2 2、 dyxdyxD2)ln()ln(與與, ,其中其中D是矩形是矩形 閉區(qū)域閉區(qū)域:
12、 :10 , 53 yx . .四四、估估計計積積分分 DdyxI )94(22的的值值, ,其其中中D是是圓圓 形形區(qū)區(qū)域域: :422 yx . .一、一、1 1、連續(xù);、連續(xù);2 2、以、以),(yxfz 為曲頂為曲頂, ,以以D為底的曲頂柱體體積為底的曲頂柱體體積 的代數(shù)和;的代數(shù)和; 3 3、,; 4 4、 . .三、三、1 1、 DDdyxdyx 32)()(; 2 2、 dyxdyxD2)ln()ln(. .四、四、 100)94(3622dyx. .練習題答案練習題答案 求曲頂柱體的體積采用求曲頂柱體的體積采用 “分割、求和分割、求和、取極限、取極限”的方法,如下動畫演示的方法,如下動畫演示 求曲頂柱體的體積采用求曲頂柱體的體積采用 “分割、求和分割、求和、取極限、取極限”的方法,如下動畫演示的方法,如下動畫演示 求曲頂柱體的體積采用求曲頂柱體的體積采用 “分割、求和分割、求和、取極限、取極限”的方法,如下動畫演示的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售經(jīng)理工作總結(jié)15篇
- 2024至2030年P(guān)VC扣板配條項目投資價值分析報告
- 二零二五年度二次供水工程結(jié)算與支付合同3篇
- 2024年師宗縣婦幼保健院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 企業(yè)合同檔案管理辦法
- 2025年班車服務數(shù)據(jù)分析與優(yōu)化合同3篇
- 審計的實習報告集錦6篇
- 系統(tǒng)建設合同
- 廣告策劃合同范本
- 北京藝術(shù)傳媒職業(yè)學院《空間生物學與空間生物技術(shù)》2023-2024學年第一學期期末試卷
- 改革開放史智慧樹知到期末考試答案2024年
- 2024五凌電力限公司招聘5人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 市政公司3年戰(zhàn)略規(guī)劃方案
- 2024年全國中考英語試單選(動詞時態(tài))
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 血糖儀使用規(guī)范課件
- DB21-T 2931-2018羊肚菌日光溫室栽培技術(shù)規(guī)程
- 貴州省黔東南州2023-2024學年九年級上學期期末文化水平測試化學試卷
- 《空調(diào)零部件介紹》課件
- 2024年度醫(yī)院內(nèi)分泌與代謝科述職報告課件
- 手術(shù)室無菌操作流程
評論
0/150
提交評論