圓周角1上課用學(xué)習(xí)教案_第1頁
圓周角1上課用學(xué)習(xí)教案_第2頁
圓周角1上課用學(xué)習(xí)教案_第3頁
圓周角1上課用學(xué)習(xí)教案_第4頁
圓周角1上課用學(xué)習(xí)教案_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、會計學(xué)1圓周角圓周角1上課上課(shng k)用用第一頁,共21頁。 復(fù)習(xí)復(fù)習(xí)(fx)引入引入:1.圓心角的定義圓心角的定義(dngy)?.OBC在同圓(或等圓)中,如果圓心角、弧、弦有一組在同圓(或等圓)中,如果圓心角、弧、弦有一組量相等,那么它們量相等,那么它們(t men)所對應(yīng)的其余兩個量都分所對應(yīng)的其余兩個量都分別相等。別相等。答答:頂點在圓心的角叫圓心角頂點在圓心的角叫圓心角2.上節(jié)課我們學(xué)習(xí)了一個反映圓心上節(jié)課我們學(xué)習(xí)了一個反映圓心角、弧、弦三個量之間關(guān)系的一個角、弧、弦三個量之間關(guān)系的一個結(jié)論,這個結(jié)論是什么?結(jié)論,這個結(jié)論是什么?第1頁/共21頁第二頁,共21頁。問題問題1

2、如圖,如圖, 為圓弧形玻璃窗,同學(xué)甲站在圓心為圓弧形玻璃窗,同學(xué)甲站在圓心O的位置,同學(xué)乙站的位置,同學(xué)乙站在正對著玻璃窗的靠墻的位置在正對著玻璃窗的靠墻的位置C,他們的視角,他們的視角(AOB和和ACB)有什么有什么(shn me)關(guān)系?關(guān)系?AB問題問題2 如果同學(xué)丙,丁分別如果同學(xué)丙,丁分別(fnbi)站在其他靠墻的位置站在其他靠墻的位置D和和E,他們的視角,他們的視角(ADB和和AEB)和同學(xué)乙的視角相同嗎?和同學(xué)乙的視角相同嗎?在海洋館里,人們可以在海洋館里,人們可以(ky)通過圓弧形玻璃窗觀看其中的海洋動物通過圓弧形玻璃窗觀看其中的海洋動物.第2頁/共21頁第三頁,共21頁。 我們

3、我們(w men)把圖中把圖中ACB、ADB、AEB這樣的這樣的頂點在圓上,并且兩邊都和圓相交的角叫做圓周角頂點在圓上,并且兩邊都和圓相交的角叫做圓周角什么什么(shn me)叫做圓叫做圓周角?周角?ABCDEO一、概念一、概念(ginin)第3頁/共21頁第四頁,共21頁。練習(xí)一:判斷練習(xí)一:判斷(pndun)下列各圖中,哪些是圓周角,為什么?下列各圖中,哪些是圓周角,為什么? 第4頁/共21頁第五頁,共21頁。探探究究CDABO 可以發(fā)現(xiàn),同弧所對的圓周角的度數(shù)沒有變化(binhu),并且它的度數(shù)恰好等于這條弧所對的圓心角的度數(shù)的一半三、分別量一下圖中弧分別量一下圖中弧AB所對的兩個所對的

4、兩個圓周角的度數(shù),比較一下,再變動圓周角的度數(shù),比較一下,再變動點點C在圓周上的位置,圓周角的度在圓周上的位置,圓周角的度數(shù)有沒有變化?你能發(fā)現(xiàn)數(shù)有沒有變化?你能發(fā)現(xiàn)(fxin)什么規(guī)律嗎?什么規(guī)律嗎?再分別量出圖中弧再分別量出圖中弧AB所對的圓周所對的圓周角和圓心角的度數(shù),比較一下,你角和圓心角的度數(shù),比較一下,你有什么發(fā)現(xiàn)有什么發(fā)現(xiàn)(fxin)?第5頁/共21頁第六頁,共21頁。 為了為了(wi le)進(jìn)一步探究上面的發(fā)現(xiàn),如圖,在進(jìn)一步探究上面的發(fā)現(xiàn),如圖,在 O上上任取一個圓周角任取一個圓周角BAC,將圓對折,使折痕經(jīng)過圓心,將圓對折,使折痕經(jīng)過圓心O和和BAC的頂點的頂點A由于點由于

5、點A的位置的取法可能不同,所以的位置的取法可能不同,所以折痕可能會:折痕可能會:(1)在圓周角的一條邊上)在圓周角的一條邊上.COAB四、同弧所對的圓周角與圓心角的關(guān)系四、同弧所對的圓周角與圓心角的關(guān)系(gun x)BOCA21即 OA=OC ,A=C 又 BOC=A+C,BOC=2A.第6頁/共21頁第七頁,共21頁。(2)在圓周角的內(nèi)部(nib)圓心圓心O在在BAC的內(nèi)部,作直徑的內(nèi)部,作直徑(zhjng)AD,利用()的結(jié)果,利用()的結(jié)果,有,有12BADBOD12DACDOC1()2BADDACBODDOC12BACBOCCOABD第7頁/共21頁第八頁,共21頁。(3)在圓周角的外

6、部(wib)12BADBOD12DACDOC1()2DACDABDOCDOB12BACBOC圓心圓心O在在BAC的外部,作直徑的外部,作直徑(zhjng)AD,利用()的,利用()的結(jié)果,有結(jié)果,有COABD第8頁/共21頁第九頁,共21頁。C1ABOC2C3五、定理五、定理(dngl) 在同圓或等圓中,同弧或等弧所對的圓 周角相等(xingdng),都等于這條弧所對的圓心角 的一半定 理 半圓(或直徑)所對的圓周角是直角, 90的圓周角所對的弦是直徑推 論第9頁/共21頁第十頁,共21頁。在同圓或等圓中,如果兩個圓周角相等在同圓或等圓中,如果兩個圓周角相等(xingdng),它們所對的弧,它

7、們所對的弧一定相等一定相等(xingdng)嗎?為什么?嗎?為什么?在同圓或等圓中,如果兩個在同圓或等圓中,如果兩個(lin )圓周角相等,它們所對弧一圓周角相等,它們所對弧一定相等定相等因為,在同圓或等圓中,如果因為,在同圓或等圓中,如果(rgu)圓周角相等,那么它所對的圓周角相等,那么它所對的圓心角也相等,因此它所對的弧也相等圓心角也相等,因此它所對的弧也相等六、六、第10頁/共21頁第十一頁,共21頁。 同圓或等圓中,相等同圓或等圓中,相等(xingdng)(xingdng)的圓周角所對的弧也相等的圓周角所對的弧也相等(xingdng)(xingdng)。DABOCEFF CAD=EBF

8、 CAD=EBF CD=EF CD=EF)第11頁/共21頁第十二頁,共21頁。例例2 如圖,如圖, O的直徑的直徑(zhjng)AB為為10 cm,弦,弦AC的長為的長為6 cm,ACB的平分線交的平分線交 O于于D,求,求BC、AD、BD的長的長86102222ACABBC在在RtABD中,中, AD2+BD2=AB2,22105 2(cm)22ADBDABABCDO解:AB是直徑(zhjng), ACB= ADB=90在RtABC 中,CD平分(pngfn) ACB,AD=BD.七、例題七、例題弧弧AD=弧弧BD.ACD= BCD第12頁/共21頁第十三頁,共21頁。1. 如圖,點如圖,

9、點A、B、C、D在同一個圓上,四邊形在同一個圓上,四邊形ABCD的對角的對角線把線把4個內(nèi)角分成個內(nèi)角分成(fn chn)8個角,這些角中哪些是相等的個角,這些角中哪些是相等的角?角?ABCD123456781 =5 =2 =3 =八、練習(xí)八、練習(xí)(linx)4876第13頁/共21頁第十四頁,共21頁。2. 求證(qizhng):如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形(提示:作出以這條邊為直徑的圓.)ABCO已知:已知:ABC ,CO為為AB邊上邊上(bin shn)的的中線,中線,求證求證(qizhng): ABC 為直角三角形為直角三角形.證明:證明:CO= A

10、B,12以以AB為直徑作為直徑作 O.AO=BO,AO=BO=CO.點點C在在 O上上.又又AB為為 O的直徑的直徑,ACB= 180= 90.1212且CO= AB. ABC 為直角三角形.第14頁/共21頁第十五頁,共21頁。3.如圖如圖 AB是是 O的直徑的直徑(zhjng), C ,D是圓上的兩是圓上的兩點點,若若ABD=40,則則BCD= .ABOCD4050解:連接解:連接(linji)AD,AB是直徑,是直徑,ADB=90,又又ABD=40,BAD=9040=50.BCD=50.第15頁/共21頁第十六頁,共21頁。4.在在O中,中,CBD=30 ,BDC=20,則則A= 。50

11、解法解法(ji f)一:連接一:連接AC, BAC=BDC=20, CAD=CBD=30, BAD=BAC+CAD =20+30 =50.即即A=50。第16頁/共21頁第十七頁,共21頁。5.在在O中,中,CBD=30 ,BDC=20,則則A= 。NoImage解法二:連接解法二:連接OB,OC,OD,BOC=2BDC=220=40, COD=2CBD=230=60,BOD=BOC+COD =40+60 =100.A= BOD= 100=50.212150第17頁/共21頁第十八頁,共21頁。第18頁/共21頁第十九頁,共21頁。 在同圓或等圓中,同弧或等弧所對的圓周角都在同圓或等圓中,同弧或等弧所對的圓周角都相等,等于相等,等于(dngy)(dn

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論